The geochemical differentiation of S-type pegmatites: constraints from major–trace element and Li–B isotopic composition of muscovite and tourmaline

Abstract

Pegmatites often exhibit regional as well as internal zonation. In this study, we use major and trace element and Li–B isotopic composition of muscovite and tourmaline from internally zoned and un-zoned S-type pegmatites and their host granites to characterize the geochemical and isotopic fractionation associated with their formation. The internally zoned pegmatites comprise three distinct textural zones, namely wall, intermediate and core. Muscovite and tourmaline occur in all the zones of these pegmatites. The trace element concentrations/ratios of muscovite from the three zones form well-defined differentiation trends marked by enrichment of incompatible elements such as Rb, Cs, Sr, B, Zn, Nb, Ta, P and the depletion of Ni, Co, V, Sc, Ti, Ba from the wall zone, through the intermediate zone to the core zone. This is suggestive of a strong role of fractional crystallization in producing the compositional diversity in the internally zoned pegmatites. Alkali element ratios such K/Rb and K/Cs in muscovite exhibit near exponential decline from the wall to the core zone which is suggestive of Rayleigh-type fractional crystallization. Fractional crystallization modelling reveals that the formation of the wall zone requires < 69% crystallization, the intermediate zone 85–95% and the core zone ca. 99% crystallization, leading to extreme enrichment of Rb and Cs and other incompatible elements. Muscovites and tourmaline from the un-zoned pegmatites display similar compositional trends as the internally zoned ones, but with a significant compositional gap between the host granite and the pegmatite. Lithium isotopic composition of muscovites and B-isotopic composition of tourmalines become progressively lighter from wall to core zone of the internally zoned pegmatite and from the granite to the pegmatite for the un-zoned pegmatites. This is suggestive of an important role of vapour exsolution in the formation of the pegmatites. Taken together, the geochemical and isotopic trends in the pegmatites can be explained by Rayleigh fractional crystallization operating in tandem with vapour exsolution.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Acosta Vigil A, Buick I, Cesare B, London D, Morgan VIGB (2012) The extent of equilibration between melt and residuum during regional anatexis and its implications for differentiation of the continental crust: a study of partially melted metapelitic enclaves. J Petrol 53(7):1319–1356

    Article  Google Scholar 

  2. Adam J, Green T (2006) Trace element partitioning between mica-and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behaviour. Contrib Mineral Petrol 152:1–17

    Article  Google Scholar 

  3. Barnes EM, Weis D, Groat LA (2012) Significant Li isotope fractionation in geochemically evolved rare element-bearing pegmatites from the Little Nahanni Pegmatite Group, NWT, Canada. Lithos 132:21–36

    Article  Google Scholar 

  4. Bea F, Pereira MD, Corretgé LG, Fershtater GB (1994) Differentiation of strongly peraluminous, perphosphorus granites: the Pedrobernardo pluton, central Spain. Geochim Cosmochim Acta 58:2609–2627

    Article  Google Scholar 

  5. Bhowmik SK, Wilde SA, Bhandari A (2011) Zircon U-Pb/Lu–Hf and monazite chemical dating of the Tirodi biotite gneiss: implication for Latest Paleoproterozoic to Early Mesoproterozoic Orogenesis in the Central Indian Tectonic Zone. Geol J 46:574–596

    Article  Google Scholar 

  6. Bryant CJ, Chappell BW, Bennett VC, McCulloch MT (2004) Lithium isotopic compositions of the New England Batholith: correlations with inferred source rock compositions. Trans R Soc Edinb Earth Sci 95(1–2):199–214

    Google Scholar 

  7. Cameron NE (1949) Internal structure of granitic pegmatites. Econ Geol Monogr 2:115

    Google Scholar 

  8. Canosa F, Martin-Izard A, Fuertes-Fuente M (2012) Evolved granitic systems as a source of rare-element deposits: the Ponte Segade case (Galicia, NW Spain). Lithos 153:165–176

    Article  Google Scholar 

  9. Černý P, Trueman DL, Ziehlke DV, Goad BE, Paul BJ (1981) The Cat Lake-Winnipeg River and the Weskusko Lake pegmatite fields, Manitoba. Manitoba Department of Energy and Mines, Mineral Resources Division, Economic Geology Report ER80-1, p 234

  10. Černý P, Meintzer RE, Anderson AJ (1985) Extreme fractionation in rare-element granitic pegmatites; selected examples of data and mechanisms. Can Mineral 23:381–421

    Google Scholar 

  11. Černý P (1991a) Fertile granites of Precambrian rare-element pegmatite fields: is geochemistry controlled by tectonic setting or source lithologies? Precambr Res 51:429–468

    Article  Google Scholar 

  12. Černý P (1991b) Rare-element granitic pegmatites. Part I: anatomy and internal evolution of pegmatitic deposits. Geosci Can 18:49–67

    Google Scholar 

  13. Černý P, Ercit TS (2005) The classification of granite pegmatites revisited. Can Mineral 43:2005–2026

    Article  Google Scholar 

  14. Černý P, Halden NM, Ferreira K et al (2012) Extreme fractionation and deformation of the leucogranite—pegmatite suite at red cross lake, manitoba, canada. II. Petrology of the leucogranites and pegmatites. Can Mineral 50:1807–1822

    Article  Google Scholar 

  15. Chakraborty T, Upadhyay D, Ranjan S et al (2019) The geological evolution of the Gangpur Schist Belt, eastern India: constraints on the formation of the Greater Indian Landmass in the Proterozoic. J Metamorph Geol 37:113–151

    Article  Google Scholar 

  16. Chappell BW, White AJR (1992) I-and S-type granites in the Lachlan Fold Belt. Earth Environ Sci Trans R Soc Edinb 83:1–26

    Google Scholar 

  17. Deveaud S, Millot R, Villaros A (2015) The genesis of LCT-type granitic pegmatites, as illustrated by lithium isotopes in micas. Chem Geol 411:97–111

    Article  Google Scholar 

  18. Dewaele S, Henjes-Kunst F, Melcher F et al (2011) Late Neoproterozoic overprinting of the cassiterite and columbite-tantalite bearing pegmatites of the Gatumba area, Rwanda (Central Africa). J Afr Earth Sci 61:10–26

    Article  Google Scholar 

  19. Ewart A, Griffin WL (1994) Application of proton-microprobe data to trace-element partitioning in volcanic-rocks. Chem Geol 117(1–4):251–284

    Article  Google Scholar 

  20. Teng FZ, Rudnick RL, McDonough WF, Wu FY (2009) Lithium isotopic systematics of A-type granites and their mafic enclaves: further constraints on the Li isotopic composition of the continental crust. Chem Geol 262:370–379

    Article  Google Scholar 

  21. Flesch GD, Anderson AR, Svec HJ (1973) A secondary isotopic standard for 6Li/7Li determinations. Int J Mass Spectrom Ion Phys 12(3):265–272

    Article  Google Scholar 

  22. Garate-Olave I, Müller A, Roda-Robles E et al (2017) Extreme fractionation in a granite–pegmatite system documented by quartz chemistry: the case study of Tres Arroyos (Central Iberian Zone, Spain). Lithos 286:162–174

    Article  Google Scholar 

  23. Garate-Olave I, Roda-Robles E, Gil-Crespo PP, Pesquera A (2018) Mica and feldspar as indicators of the evolution of a highly evolved granite-pegmatite system in the Tres Arroyos area (Central Iberian Zone, Spain). J Iber Geol 44:375–403

    Article  Google Scholar 

  24. Greenland LP (1970) An equation for trace element distribution during magmatic crystallization. Am Mineral J Earth Planet Mater 55:455–465

    Google Scholar 

  25. Hanson GN (1978) The application of trace elements to the petrogenesis of igneous rocks of granitic composition. Earth Planet Sci Lett 38:26–43

    Article  Google Scholar 

  26. Hertogen J, Gijbels R (1976) Calculation of trace element fractionation during partial melting. Geochim Cosmochim Acta 40:313–322

    Article  Google Scholar 

  27. Higuchi H, Nagasawa H (1969) Partition of trace elements between rock-forming minerals and the host volcanic rocks. Earth Planet Sci Lett 7:281–287

    Article  Google Scholar 

  28. Hulsbosch N, Hertogen J, Dewaele S et al (2013) Petrographic and mineralogical characterisation of fractionated pegmatites culminating in the Nb–Ta–Sn pegmatites of the Gatumba area (western Rwanda). Geol Belgica 16:105–117

    Google Scholar 

  29. Hulsbosch N, Hertogen J, Dewaele S et al (2014) Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups. Geochim Cosmochim Acta 132:349–374

    Article  Google Scholar 

  30. Icenhower J, London D (1995) An experimental study of element partitioning among biotite, muscovite, and coexisting peraluminous silicic melt at 200 MPa (H2O). Am Mineral 80:1229–1251

    Article  Google Scholar 

  31. Iveson AA, Webster JD, Rowe MC, Neill OK (2019) Fluid-melt trace-element partitioning behaviour between evolved melts and aqueous fluids: experimental constraints on the magmatic-hydrothermal transport of metals. Chem Geol 516:18–41

    Article  Google Scholar 

  32. Jahns RH (1953) The genesis of pegmatites: I. Occurrence and origin of giant crystals. Am Mineral 38:563–598

    Google Scholar 

  33. Jahns RH (1982) Internal evolution of pegmatite bodies. Granitic Pegmatites Sci Ind 8:293–327

    Google Scholar 

  34. Jahns RH, Burnham CW (1969) Experimental studies of pegmatite genesis; l, a model for the derivation and crystallization of granitic pegmatites. Econ Geol 64:843–864

    Article  Google Scholar 

  35. James RH, Palmer MR (2000) The lithium isotope composition of international rock standards. Chem Geol 166(3–4):319–326

    Article  Google Scholar 

  36. Jolliff BL, Papike JJ, Shearer CK (1986) Tourmaline as a recorder of pegmatite evolution; Bob Ingersoll Pegmatite, Black Hills, South Dakota. Am Mineral 71:472–500

    Google Scholar 

  37. Jolliff BL, Papike JJ, Shearer CK (1987) Fractionation trends in mica and tourmaline as indicators of pegmatite internal evolution: Bob Ingersoll pegmatite, Black Hills, South Dakota. Geochim Cosmochim Acta 51:519–534

    Article  Google Scholar 

  38. Jolliff BL, Papike JJ, Shearer CK (1992) Petrogenetic relationships between pegmatite and granite based on geochemistry of muscovite in pegmatite wall zones, Black Hills, South Dakota, USA. Geochim Cosmochim Acta 56:1915–1939

    Article  Google Scholar 

  39. Kanungo DN, Mahalik NK (1972) Metamorphism in the eastern part of Gangpur series. J Geol Soc India 13:122–130

    Google Scholar 

  40. Keller P, Roda Robles E, Pesquera Pérez A, Fontan F (1999) Chemistry, paragenesis and significance of tourmaline in pegmatites of the Southern Tin Belt, central Namibia. Chem Geol 158:203–225

    Article  Google Scholar 

  41. Kent AJR, Blundy J, Cashman K, Cooper KM, Donnelly C, Pallister JS, Reagan M, Rowe MC, Thornber CR (2007) Vapor transport prior to the October 2004 eruption of Mount St. Helens, Washington. Geology 35:231–235

    Article  Google Scholar 

  42. Kowalski PM, Jahn S (2011) Prediction of equilibrium Li isotope fractionation between minerals and aqueous solutions at high P and T: an efficient ab initio approach. Geochim Cosmochim Acta 75:6112–6123

    Article  Google Scholar 

  43. Larsen RB (2002) The distribution of rare-earth elements in k-feldspar as an indicator of petrogenetic processes in granitic pegmatites: examples from two pegmatite fields in southern Norway. Can Mineral 40:137–152

    Article  Google Scholar 

  44. Lentz D (1992) Petrogenesis and geochemical composition of biotites in rare-element granitic pegmatites in the southwestern Grenville Province, Canada. Mineral Petrol 46:239–256

    Article  Google Scholar 

  45. Li J, Huang X-L, Wei GJ, Liu Y, Ma J-L, Han L, He P-L (2018) Lithium isotope fractionation during magmatic differentiation and hydrothermal processes in rare-metal granites. Geochim Cosmochim Acta 240:64–79

    Article  Google Scholar 

  46. London D (2005) Granitic pegmatites: an assessment of current concepts and directions for the future. Lithos 80:281–303

    Article  Google Scholar 

  47. London D (2008) Pegmatites. Can Mineral 10:347

    Google Scholar 

  48. London D (2009) The origin of primary textures in granitic pegmatites. Can Mineral 47:697–724

    Article  Google Scholar 

  49. London D (2014) A petrologic assessment of internal zonation in granitic pegmatites. Lithos 184–187:74–104

    Article  Google Scholar 

  50. London D (2015) Comment on “A petrologic assessment of internal zonation in granitic pegmatites” by David London (2014). Lithos 212–215:469–484

    Article  Google Scholar 

  51. London D, Linnen RL, Samson IM (2005) Geochemistry of alkali and alkaline earth elements in ore-forming granites, pegmatites and rhyolites. In: Linnen RL, Samson IM (eds) Rare earth elements geochemistry miner deposition. Short Course Notes, vol 17. Geological Association of Canada, Toronto, pp 17–43

    Google Scholar 

  52. London D, Morgan GB (2012) The pegmatite puzzle. Elements 8:263–268

    Article  Google Scholar 

  53. Long PE (1978) Experimental determination of partition coefficients for Rb, Sr and Ba between alkali feldspar and silicate liquid. Geochim Cosmochim Acta 42:833–846

    Article  Google Scholar 

  54. Lynton SJ, Walker RJ, Candela PA (2005) Lithium isotopes in the system Qz–Ms–fluid: an experimental study. Geochim Cosmochim Acta 69:3337–3347

    Article  Google Scholar 

  55. Magna T, Janoušek V, Kohút M et al (2010) Fingerprinting sources of orogenic plutonic rocks from Variscan belt with lithium isotopes and possible link to subduction-related origin of some A-type granites. Chem Geol 274:94–107

    Article  Google Scholar 

  56. Magna T, Novak M, Cempírek J et al (2016) Crystallographic control on lithium isotope fractionation in Archean to Cenozoic LCT pegmatites. Geology 44:655–658

    Article  Google Scholar 

  57. Marks MAW, Marschall HR, Schühle P et al (2013) Trace element systematics of tourmaline in pegmatitic and hydrothermal systems from the Variscan Schwarzwald (Germany): the importance of major element composition, sector zoning, and fluid or melt composition. Chem Geol 344:73–90

    Article  Google Scholar 

  58. Martin C, Ponzevera E, Harlow G (2015) In situ lithium and boron isotope determinations in mica, pyroxene, and serpentine by LA-MC-ICP-MS. Chem Geol 412:107–116

    Article  Google Scholar 

  59. Mercer CN, Hofstra AH, Todorov TI, Roberge J, Burgisser A, Adams DT, Cosca M (2015) Pre-eruptive conditions of the Hideaway Park topaz rhyolite: insights into metal source and evolution of magma parental to the Henderson porphyry molybdenum deposit. Colorado J Petrol 56:645–679

    Article  Google Scholar 

  60. Míková J, Košler J, Wiedenbeck M (2014) Matrix effects during laser ablation MC ICP-MS analysis of boron isotopes in tourmaline. J Anal At Spectrom 29:903–914

    Article  Google Scholar 

  61. Morgan GB VI (2016) A spreadsheet for calculating normative mole fractions of end-member species for Na–Ca–Li–Fe2+–Mg–Al tourmalines from electron microprobe data. Am Mineral 101:111–119

    Article  Google Scholar 

  62. Mulja T, Williams-Jones AE, Wood SA, Boily M (1995) The rare-element-enriched monzogranite–pegmatite–quartz vein systems in the Preissac-Lacorne Batholith, Quebec; II, Geochemistry and petrogenesis. Can Mineral 33:817–833

    Google Scholar 

  63. Mulja T, Williams-Jones AE (2018) The physical and chemical evolution of fluids in rare-element granitic pegmatites associated with the Lacorne pluton, Québec, Canada. Chem Geol 493:281–297

    Article  Google Scholar 

  64. Nash WP, Crecraft HR (1985) Partition coefficients for trace elements in silicic magmas. Geochim Cosmochim Acta 49:2309–2322

    Article  Google Scholar 

  65. Palmer MR, Slack JF (1989) Boron isotopic composition of tourmaline from massive sulfide deposits and tourmalinites. Contrib Mineral Petrol 103:434–451

    Article  Google Scholar 

  66. Philpotts JA, Schnetzler CC (1970) Phenocryst-matrix partition coefficients for K, Rb, Sr and Ba, with applications to anorthosite and basalt genesis. Geochim Cosmochim Acta 34:307–322

    Article  Google Scholar 

  67. Rockhold JR, Nabelek PI, Glascock MD (1987) Origin of rhythmic layering in the Calamity Peak satellite pluton of the Harney Peak Granite, South Dakota: the role of boron. Geochim Cosmochim Acta 51:487–496

    Article  Google Scholar 

  68. Roda-Robles E, Pesquera A, Gil-Crespo P, Torres-Ruiz J (2012) From granite to highly evolved pegmatite: A case study of the Pinilla de Fermoselle granite–pegmatite system (Zamora, Spain). Lithos 153:192–207

    Article  Google Scholar 

  69. Roda-Robles E, Pesquera A, Gil-Crespo P, Vieira R, Lima A, Garate-Olave I, Martins T, Torres-Ruiz J (2016) Geology and mineralogy of Li mineralization in the Central Iberian Zone (Spain and Portugal). Mineral Mag 80(1):103–126

    Article  Google Scholar 

  70. Roda-Robles E, Pesquera-Perez A, Simmons WB, Gil-Crespo PP, Falster AU (2019) Evidence for internal fractionation from Li isotopes in tourmaline and mica in the Berry-Havey rare-element pegmatite (Maine, USA). Can Mineral 57(5):779–782

    Article  Google Scholar 

  71. Romer RL, Meixner A, Förster HJ (2014) From granite to highly evolved pegmatite: a case study of the Pinilla de Fermoselle granite–pegmatite system (Zamora, Spain). Geochim Cosmochim Acta 131:98–114

    Article  Google Scholar 

  72. Rowe MC, Kent AJR, Thornber CR (2008) Using amphibole phenocrysts to track vapor transfer during magma crystallization and transport: an example from Mount St. Helens, Washington. J Volcanol Geotherm Res 178:593–607

    Article  Google Scholar 

  73. le Roux PJ (2010) Lithium isotope analysis of natural and synthetic glass by laser ablation MC-ICP-MS. J Anal At Spectrom 25:1033–1038

    Article  Google Scholar 

  74. Schiavi F, Kobayashi K, Moriguti T et al (2010) Degassing, crystallization and eruption dynamics at Stromboli: trace element and lithium isotopic evidence from 2003 ashes. Contrib Mineral Petrol 159:541–561

    Article  Google Scholar 

  75. Shannon JR, Walker BM, Carten RB, Geraghty EP (1982) Unidirectional solidification textures and their significance in determining relative ages of intrusions at the Henderson Mine, Colorado. Geology 10:293–297

    Article  Google Scholar 

  76. Shaw DM (1968) A review of K–Rb fractionation trends by covariance analysis. Geochim Cosmochim Acta 32:573–601

    Article  Google Scholar 

  77. Shearer CK, Papike J, Laul J (1985) Chemistry of potassium feldspars from three zoned pegmatites, Black Hills, South Dakota: Implications concerning pegmatite evolution. Geochim Cosmochim Acta 49:663–673

    Article  Google Scholar 

  78. Shearer CK, Papike J, Laul J (1987) Mineralogical and chemical evolution of a rare-element granite-pegmatite system: Harney Peak Granite, Black Hills, South Dakota. Geochim Cosmochim Acta 51:473–486

    Article  Google Scholar 

  79. Shearer CK, Papike JJ, Jolliff BL (1992) Petrogenetic links among granites and pegmatites in the Harney Peak rare-element granite-pegmatite system, Black Hills, South Dakota. Can Mineral 30:785–809

    Google Scholar 

  80. Simmons WB, Pezzotta F, Shigley JE, Beurlen H (2012) Granitic pegmatites as sources of colored gemstones. Elements 8:281–287

    Article  Google Scholar 

  81. Simmons WB, Webber KL (2008) Pegmatite genesis: state of the art. Eur J Mineral 20:421–438

    Article  Google Scholar 

  82. Steinmann LK, Oeser M, Horn I, Seitz HM, Weyer S (2019) In situ high-precision lithium isotope analyses at low concentration levels with femtosecond-LAMC-ICP-MS. J Anal At Spectrom 34:1447–1458

    Article  Google Scholar 

  83. Taylor SR (1965) The application of trace element data to problems in petrology. Phys Chem Earth 6:133–213

    Article  Google Scholar 

  84. Teng F-Z, McDonough WF, Rudnick RL et al (2004) Lithium isotopic composition and concentration of the upper continental crust. Geochim Cosmochim Acta 68:4167–4178

    Article  Google Scholar 

  85. Teng F-Z, McDonough WF, Rudnick RL et al (2006a) Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota. Am Mineral 91:1488–1498

    Article  Google Scholar 

  86. Teng F-Z, McDonough WF, Rudnick RL, Walker RJ (2006b) Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite. Earth Planet Sci Lett 243:701–710

    Article  Google Scholar 

  87. Tollan P, Ellis B, Troch J, Neukampf J (2019) Assessing magmatic volatile equilibria through FTIR spectroscopy of unexposed melt inclusions and their host quartz: a new technique and application to the Mesa Falls Tuff, Yellowstone. Contrib Mineral Petrol 174:24

    Article  Google Scholar 

  88. Thomas R, Davidson P, Beurlen H (2012) The competing models for the origin and internal evolution of granitic pegmatites in the light of melt and fluid inclusion research. Mineral Petrol 106:55–73

    Article  Google Scholar 

  89. Thomas R, Davidson P (2013) The missing link between granites and granitic pegmatites. J Geosci 58:183–200

    Article  Google Scholar 

  90. Thomas R, Davidson P (2015) Comment on “A petrologic assessment of internal zonation in granitic pegmatites” by David London (2014). Lithos 212–215:462–468

    Article  Google Scholar 

  91. Tian S, Zhao Y, Hou Z, Tian Y et al (2017) Lithium isotopic composition and concentration of Himalayan leucogranites and the Indian lower continental crust. Lithos 284–285:416–428

    Article  Google Scholar 

  92. Tindle AG, Breaks FW (2000) Columbite–tantalite mineral chemistry from rare-element granitic pegmatites: Separation Lakeh area, NW Ontario, Canada. Mineral Petrol 70:165–198

    Article  Google Scholar 

  93. Tischendorf G, Förster H-J, Gottesmann B (2001) Minor-and trace-element composition of trioctahedral micas: a review. Mineral Mag 65(2):249–276

    Article  Google Scholar 

  94. Tonarini S, D’Antonio M, Di Vito MA et al (2009) Geochemical and B–Sr–Nd isotopic evidence for mingling and mixing processes in the magmatic system that fed the Astroni volcano (4.1–3.8 ka) within the Campi Flegrei caldera (southern Italy). Lithos 107:135–151

    Article  Google Scholar 

  95. Trueman DL, Černý P (1982) Exploration for rare-element granitic pegmatites. In: Černý P (ed) Granitic pegmatites in Science and Industry, Short course handbook, vol 8. Mineralogical Association of Canada, pp 463–494

  96. van Hinsberg VJ (2011) Preliminary experimental data on trace-element partitioning between tourmaline and silicate melt. Can Mineral 49:153–163

    Article  Google Scholar 

  97. Webber KL, Falster AU, Simmons WB, Foord EE (1997) The role of diffusion-controlled oscillatory nucleation in the formation of line rock in pegmatite–aplite dikes. J Petrol 38:1777–1791

    Article  Google Scholar 

  98. Webster JD, Holloway JR, Hervig RL (1989) Partitioning of lithophile trace elements between H2O and H2O + CO2 fluids and topaz rhyolite melt. Econ Geol 84:116–134

    Article  Google Scholar 

  99. Webster JD, Thomas R, Rhede D, Förster H-J, Seltmann R (1997) Melt inclusions in quartz from an evolved peraluminous pegmatite: geochemical evidence for strong tin enrichment in fluorine-rich and phosphorus-rich residual liquids. Geochim Cosmochim Acta 61:2589–2604

    Article  Google Scholar 

  100. Wenger M, Armbruster T (1991) Crystal chemistry of lithium: oxygen coordination and bonding. Eur J Mineral 3:387–400

    Article  Google Scholar 

  101. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Article  Google Scholar 

  102. Wunder B, Meixner A, Romer RL et al (2007) Lithium isotope fractionation between Li-bearing staurolite, Li-mica and aqueous fluids: an experimental study. Chem Geol 238:277–290

    Article  Google Scholar 

  103. Wunder B, Meixner A, Romer RL, Jahn S (2011) Li-isotope fractionation between silicates and fluids: Pressure dependence and influence of the bonding environment. Eur J Mineral 23:333–342

    Article  Google Scholar 

Download references

Acknowledgements

The trace element and Li- and B-isotope data were generated at the Diamond Jubilee Radiogenic Isotope Facility of the Department of Geology and Geophysics, IIT Kharagpur. DU acknowledges financial support from IIT Kharagpur for setting up the laboratory. Biswajit Mishra is thanked for access to the DST funded EPMA National Facility of the Department. The authors are grateful to Dr. Philip M. Piccoli and Dr. John F. Slack for providing the tourmaline standards used for B-isotopic study. TC acknowledges the financial support from the Council of Scientific and Industrial Research, New Delhi through a Ph.D. fellowship. Constructive comments by David London and two anonymous reviewers helped to improve the manuscript significantly. We acknowledge editorial handling by T. Grove.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tuhin Chakraborty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Timothy L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1634 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, T., Upadhyay, D. The geochemical differentiation of S-type pegmatites: constraints from major–trace element and Li–B isotopic composition of muscovite and tourmaline. Contrib Mineral Petrol 175, 60 (2020). https://doi.org/10.1007/s00410-020-01697-x

Download citation

Keywords

  • Pegmatite
  • Rayleigh fractionation
  • Li isotope
  • Boron isotope
  • Vapour exsolution
  • Gangpur