Skip to main content
Log in

Oxygen fugacity at the base of the Talkeetna arc, Alaska

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The origin of the more oxidized nature of arc magmas as compared to that of mid-ocean ridge basalts (MORB) is debated, considered to be either a feature of their mantle source, or produced during crustal transit and eruption. Fe3+/FeT ratios (Fe3+/[Fe3+ + Fe2+]) in arc volcanic rocks and glasses and thermodynamic oxybarometry on mantle xenoliths from arc lavas indicate elevated magmatic oxygen fugacity (\(f_{{{\text{O}}_{ 2} }}\)), whereas, redox-sensitive trace elements ratios and abundances in arc volcanic rocks have been used to suggest that arcs have source regions with \(f_{{{\text{O}}_{ 2} }}\) similar to the MORB source. Here, we take an alternative approach by calculating the \(f_{{{\text{O}}_{ 2} }}\) of the uppermost mantle and lowermost ultramafic cumulates from the accreted Jurassic Talkeetna arc (Alaska). This approach allows us to quantify the \(f_{{{\text{O}}_{ 2} }}\) of the sub-arc mantle and of primary arc magmas crystallizing at the base of an island arc, which have not been affected by processes during crustal transit and eruption which could affect their \(f_{{{\text{O}}_{ 2} }}\). Implementing olivine–spinel oxybarometry, we find that the upper mantle (harzburgites and lherzolites) and ultramafic cumulates (clinopyroxenites and dunites) crystallized between + 0.4 and + 2.3 log units above the fayalite-magnetite-quartz buffer, consistent with previous studies suggesting that the sub-arc mantle is oxidized relative to that of MORB. In addition, the Talkeetna paleo-arc allows us to examine coeval lavas and their redox-sensitive trace element ratios (e.g., V/Sc). The average V/Sc ratios of high MgO (> 6 wt%) lavas are 6.7 ± 1.6 (2σ), similar to that of MORB. However, V/Sc ratios must be interpretted in terms the degree of partial melting, as well as, the initial V/Sc ratio of the mantle source in order to derive information about \(f_{{{\text{O}}_{ 2} }}\) of their mantle source. The V/Sc ratios of Talkeetna lavas are consistent with the elevated \(f_{{{\text{O}}_{ 2} }}\) recorded in the sub-arc mantle and primitive cumulates (olivine Mg# [Mg/(Mg + Fe)] × 100 > 82) if a depleted mantle source underwent 15–20% melting. Our results suggest that the arc mantle is, on average, more oxidized than the MORB source and that V/Sc ratios must be interpreted in the context of a partial melting model where all model parameters are appropriate for arc magma genesis. This study reconciles V/Sc ratios in arc volcanic rocks with \(f_{{{\text{O}}_{ 2} }}\) of primary arc basalts and the sub-arc mantle from the same locality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adams GE, Bishop FC (1986) The olivine—clinopyroxene geobarometer: experimental results in the CaO–FeO–MgO–SiO2 system. Contrib Mineral Petrol 94(2):230–237

    Google Scholar 

  • Amato JM, Rioux ME, Kelemen PB, Gehrels GE, Clift PD, Pavlis TL, Draut AE (2007) U–Pb geochronology of volcanic rocks from the Jurassic Talkeetna Formation and detrital zircons from pre-arc and post-arc sequences: implications for the age of magmatism and inheritance in the Talkeetna arc. Geol Soc Am Spec Pap 431:253–271

    Google Scholar 

  • Arai S, Ishimaru S (2008) Insights into petrological characteristics of the lithosphere of mantle wedge beneath arcs through peridotite xenoliths: a review. J Petrol 49(4):665–695

    Google Scholar 

  • Arculus RJ (1994) Aspects of magma genesis in arcs. Lithos 33(1–3):189–208

    Google Scholar 

  • Armstrong JT (1995) Citzaf-a package of correction programs for the quantitative electron microbeam X-ray-analysis of thick polished materials, thin-films, and particles. Microbeam Anal 4(3):177–200

    Google Scholar 

  • Bacon CR, Bruggman PE, Christiansen RL, Clynne MA, Donnelly-Nolan JM, Hildreth W (1997) Primitive magmas at five Cascades volcanic fields: melts from hot, heterogeneous sub-arc mantle. Can Mineral 35:397–424

    Google Scholar 

  • Ballhaus C (1993) Redox states of lithospheric and asthenospheric upper mantle. Contrib Mineral Petrol 114(3):331–348

    Google Scholar 

  • Ballhaus C, Berry RF, Green DH (1991) High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib Mineral Petrol 107(1):27–40

    Google Scholar 

  • Barker F, Grantz A (1986) Talkeetna Formation in the south-eastern Talkeetna Mountains, southern Alaska: an Early Jurassic andesitic island arc. Geol Soc Am Abstr Progr 14:147

    Google Scholar 

  • Barker F, Aleinikoff JN, Box S, Evans BW, Gehrels G, Hill MD, Irving AJ, Kelley JS, Leeman WP, Lull JS, Nockleberg WJ, Pallister JS, Patrick PE, Plafker G, Rubin CM (1994) Some accreted volcanic rocks of Alaska and their elemental abundances. In: Plafker G, Berg HC (eds) The geology of Alaska: Boulder, Colorado, Geological Society of America, Geology of North America, vol G-1, Geological Society of America, Boulder, CO, pp 555–587

  • Barsdell M, Smith IE (1989) Petrology of recrystallized ultramafic xenoliths from Merelava volcano, Vanuatu. Contrib Miner Petrol 102(2):230–241

    Google Scholar 

  • Behn MD, Kelemen PB (2006) Stability of arc lower crust: insights from the Talkeetna arc section, south central Alaska, and the seismic structure of modern arcs. J Geophys Res Solid Earth 111:B11

    Google Scholar 

  • Bell BR, Claydon RV (1992) The cumulus and post-cumulus evolution of chrome-spinels in ultrabasic layered intrusions: evidence from the Cuillin Igneous Complex, Isle of Skye, Scotland. Contrib Mineral Petrol 112(2–3):242–253

    Google Scholar 

  • Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. J petrol 29(2):445–522

    Google Scholar 

  • Berry AJ, Stewart GA, O’Neill HSC, Mallmann G, Mosselmans JFW (2018) A re-assessment of the oxidation state of iron in MORB glasses. Earth Planet Sci Lett 483:114–123

    Google Scholar 

  • Beyer BJ (1980) Petrology and geochemistry of ophiolite fragments in a tectonic mélange, Kodiak islands, Alaska, Ph.D. thesis, 227, University of California, Santa Cruz

  • Bézos A, Humler E (2005) The Fe3+/ΣFe ratios of MORB glasses and their implications for mantle melting. Geochim Cosmochim Acta 69(3):711–725

    Google Scholar 

  • Birner SK, Warren JM, Cottrell E, Davis FA (2016) Hydrothermal alteration of seafloor peridotites does not influence oxygen fugacity recorded by spinel oxybarometry. Geology 44(7):535–538

    Google Scholar 

  • Birner SK, Cottrell E, Warren JM, Kelley KA, Davis FA (2018) Peridotites and basalts reveal broad congruence between two independent records of mantle f O2 despite local redox heterogeneity. Earth Planet Sci Lett 494:172–189

    Google Scholar 

  • Blatter DL, Carmichael IS (1998) Hornblende peridotite xenoliths from central Mexico reveal the highly oxidized nature of subarc upper mantle. Geology 26(11):1035–1038

    Google Scholar 

  • Bottinga Y, Allegre C (1976) Geophysical, petrological and geochemical models of the oceanic lithosphere. Tectonophysics 32(1–2):9–59

    Google Scholar 

  • Brandon AD, Draper DS (1996) Constraints on the origin of the oxidation state of mantle overlying subduction zones: an example from Simcoe, Washington, USA. Geochim Cosmochim Acta 60(10):1739–1749

    Google Scholar 

  • Brounce MN, Kelley KA, Cottrell E (2014) Variations in Fe3+/∑Fe of Mariana arc basalts and mantle wedge fO2. J Petrol 55(12):2513–2536

    Google Scholar 

  • Bryant JA, Yogodzinski GM, Churikova TG (2007) Melt-mantle interactions beneath the Kamchatka arc: evidence from ultramafic xenoliths from Shiveluch volcano. Geochem Geophys Geosyst 8(4):1–24. https://doi.org/10.1029/2006GC001443

    Article  Google Scholar 

  • Bryndzia LT, Wood BJ (1990) Oxygen thermobarometry of abyssal spinel peridotites: the redox state and C–O–H volatile composition of the Earth’s sub-oceanic upper mantle. Am J Sci 290(10):1093–1116

    Google Scholar 

  • Burns LE (1985) The Border Ranges ultramafic and mafic complex, south-central Alaska: cumulate fractionates of island-arc volcanics. Can J Earth Sci 22(7):1020–1038

    Google Scholar 

  • Burns LE, Pessel GH, Little TA, Pavlis TL, Newberry RJ, Winkler GR, Decker J (1991) Geology of the northern Chugach Mountains, south-central Alaska: Alaska Division of Geological and Geophysical Surveys Professional Report 94

  • Cameron EN (1975) Postcumulus and subsolidus equilibration of chromite and coexisting silicates in the eastern Bushveld complex. Geochim Cosmochim Acta 39:1021–1033

    Google Scholar 

  • Canil D (1997) Vanadium partitioning and the oxidation state of Archaean komatiite magmas. Nature 389(6653):842–845

    Google Scholar 

  • Canil D (2002) Vanadium in peridotites, mantle redox and tectonic environments: archean to present. Earth Planet Sci Lett 195(1–2):75–90

    Google Scholar 

  • Canil D, O'Neill HSC (1996) Distribution of ferric iron in some upper-mantle assemblages. J Petrol 37(3):609–635

    Google Scholar 

  • Canil D, Fedortchouk Y (2000) Clinopyroxene-liquid partitioning for vanadium and the oxygen fugacity during formation of cratonic and oceanic mantle lithosphere. J Geophys Res Solid Earth 105(B11):26003–26016

    Google Scholar 

  • Canil D, O’Neill HSC, Pearson DG, Rudnick RL, McDonough WF, Carswell DA (1994) Ferric iron in peridotites and mantle oxidation states. Earth Planet Sci Lett 123(1–3):205–220

    Google Scholar 

  • Carmichael ISE (1991) The redox states of basic and silicic magmas: a reflection of their source regions? Contrib Mineral Petrol 106(2):129–141

    Google Scholar 

  • Carmichael IS, Ghiorso MS (1990) The effect of oxygen fugacity on the redox state of natural liquids and their crystallizing phases. Rev Min Geochem 24(1):191–212

    Google Scholar 

  • Carmichael ISE, Nicholls JT, Smith AL (1970) Silica activity in igneous rocks. Am Min 55(1–2):246–263

    Google Scholar 

  • Christie DM, Carmichael IS, Langmuir CH (1986) Oxidation states of mid-ocean ridge basalt glasses. Earth Planet Sci Lett 79(3–4):397–411

    Google Scholar 

  • Clark SH (1972) The Wolverine complex, a newly discovered layered ultramafic body in the western Chugach Mountains, Alaska. USGS open-file report 72-70

  • Clark T (1978) Oxide minerals in the Turnagain ultramafic complex, northwestern British Columbia. Can J Earth Sci 15(12):1893–1903

    Google Scholar 

  • Clift PD, Draut AE, Kelemen PB, Blusztajn J, Greene A (2005) Stratigraphic and geochemical evolution of an oceanic arc upper crustal section: the Jurassic Talkeetna Volcanic Formation, south-central Alaska. Geol Soc Am Bull 117(7–8):902–925

    Google Scholar 

  • Coogan LA, Jenkin GR, Wilson RN (2002) Constraining the cooling rate of the lower oceanic crust: a new approach applied to the Oman ophiolite. Earth Planet Sci Lett 199(1–2):127–146

    Google Scholar 

  • Cottrell E, Kelley KA (2011) The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle. Earth Planet Sci Lett 305(3–4):270–282

    Google Scholar 

  • Dalton JA, Lane SJ (1996) Electron microprobe analysis of Ca in olivine close to grain boundaries: the problem of secondary X-ray fluorescence. Am Min 81(1–2):194–201

    Google Scholar 

  • Dauphas N, Craddock PR, Asimow PD, Bennett VC, Nutman AP, Ohnenstetter D (2009) Iron isotopes may reveal the redox conditions of mantle melting from Archean to Present. Earth Planet Sci Lett 288(1–2):255–267

    Google Scholar 

  • Davis FA, Cottrell E, Birner SK, Warren JM, Lopez OG (2017) Revisiting the electron microprobe method of spinel-olivine-orthopyroxene oxybarometry applied to spinel peridotites. Am Mineral 102(2):421–435

    Google Scholar 

  • DeBari SM, Coleman RG (1989) Examination of the deep levels of an island arc: evidence from the Tonsina ultramafic-mafic assemblage, Tonsina, Alaska. J Geophys Res Solid Earth 94(B4):4373–4391

    Google Scholar 

  • DeBari SM, Greene AR (2011) Vertical stratification of composition, density, and inferred magmatic processes in exposed arc crustal sections. Arc-continent collision. Springer, Berlin, pp 121–144

    Google Scholar 

  • Debari SM, Sleep NH (1991) High-Mg, low-Al bulk composition of the Talkeetna island arc, Alaska: implications for primary magmas and the nature of arc crust. Geol Soc Am Bull 103(1):37–47

    Google Scholar 

  • Dick HJ, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Miner Petrol 86(1):54–76

    Google Scholar 

  • Dodson MH (1973) Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petrol 40(3):259–274

    Google Scholar 

  • Dohmen R, Faak K, Blundy JD (2017) Chronometry and speedometry of magmatic processes using chemical diffusion in olivine, plagioclase and pyroxenes. Rev Mineral Geochem 83(1):535–575

    Google Scholar 

  • Evans KA, Elburg MA, Kamenetsky VS (2012) Oxidation state of subarc mantle. Geology 40(9):783–786

    Google Scholar 

  • Gaetani GA (2016) The behavior of Fe3+/Σ Fe during partial melting of spinel lherzolite. Geochimica et cosmochimica Acta 185:64–77

    Google Scholar 

  • Greene AR, Debari SM, Kelemen PB, Blusztajn J, Clift PD (2006) A detailed geochemical study of island arc crust: the Talkeetna arc section, south-central Alaska. J Petrol 47(6):1051–1093

    Google Scholar 

  • Grove T, Parman S, Bowring S, Price R, Baker M (2002) The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contrib Mineral Petrol 142(4):375–396

    Google Scholar 

  • Hacker BR, Mehl L, Kelemen PB, Rioux M, Behn MD, Luffi P (2008) Reconstruction of the Talkeetna intraoceanic arc of Alaska through thermobarometry. J Geophys Res 113:B03204. https://doi.org/10.1029/2007JB005208

    Article  Google Scholar 

  • Hacker BR, Kelemen PB, Rioux M, McWilliams MO, Gans PB, Reiners PW, Layer PW, Söderlund U, Vervoort JD (2011) Thermochronology of the Talkeetna intraoceanic arc of Alaska: Ar/Ar, U-Th/He, Sm–Nd, and Lu–Hf dating. Tectonics 30(1):TC1011. https://doi.org/10.1029/2010TC002798

    Article  Google Scholar 

  • Henderson P (1970) The significance of the mesostasis of basic layered igneous rocks. J Petrol 11(3):463–473

    Google Scholar 

  • Hirschmann MM (1991) Thermodynamics of multicomponent olivines and the solution properties of (Ni, Mg, Fe)2SiO4 and (Ca, Mg, Fe)2SiO4 olivines. Am Mineral 76:1232–1248

    Google Scholar 

  • Holness MB, Vukmanovic Z, Mariani E (2017) Assessing the role of compaction in the formation of adcumulates: a microstructural perspective. J Petrol 58(4):643–673

    Google Scholar 

  • Humphreys MC (2009) Chemical evolution of intercumulus liquid, as recorded in plagioclase overgrowth rims from the Skaergaard intrusion. J Petrol 50(1):127–145

    Google Scholar 

  • Jackson ED (1961) Primary textures and mineral associations in the ultramafic zone of the Stillwater Complex, Montana. Prof Pap US Geol Surv 358:1–106

    Google Scholar 

  • Jagoutz OE (2010) Construction of the granitoid crust of an island arc. Part II: a quantitative petrogenetic model. Contrib Mineral Petrol 160(3):359–381

    Google Scholar 

  • Jagoutz O, Kelemen PB (2015) Role of arc processes in the formation of continental crust. Ann Rev Earth Planet Sci 43:363–404

    Google Scholar 

  • Jull M, Kelemen PA (2001) On the conditions for lower crustal convective instability. J Geophys Res: Solid Earth 106(B4):6423–6446

    Google Scholar 

  • Jurewicz AJ, Watson EB (1988) Cations in olivine, part 2: diffusion in olivine xenocrysts, with applications to petrology and mineral physics. Contrib Mineral Petrol 99(2):186–201

    Google Scholar 

  • Kelemen PB, Hanghøj K, Greene AR (2003) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: Rudnick RL (ed) The Crust. Elsevier, New York, pp 593–659

    Google Scholar 

  • Kelemen PB, Hanghøj K, Greene A (2014) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: Rudnick RL (ed) Treatise on geochemistry, vol 4: the crust, 2nd edn. Pergamon, Oxford, pp 746–805

    Google Scholar 

  • Kelley KA, Cottrell E (2009) Water and the oxidation state of subduction zone magmas. Science 325(5940):605–607

    Google Scholar 

  • Kelley KA, Cottrell E (2012) The influence of magmatic differentiation on the oxidation state of Fe in a basaltic arc magma. Earth Planet Sci Lett 329:109–121

    Google Scholar 

  • Kelley KA, Plank T, Grove TL, Stolper EM, Newman S, Hauri E (2006) Mantle melting as a function of water content beneath back-arc basins. J Geophys Res 111:B09208. https://doi.org/10.1029/2005JB003732

    Article  Google Scholar 

  • Kerr RC, Tait SR (1986) Crystallization and compositional convection in a porous medium with application to layered igneous intrusions. J Geophys Res Solid Earth 91(B3):3591–3608

    Google Scholar 

  • Kinzler RJ (1997) Melting of mantle peridotite at pressures approaching the spinel to garnet transition: application to mid-ocean ridge basalt petrogenesis. J Geophys Res Solid Earth 102(B1):853–874

    Google Scholar 

  • Köhler TP, Brey G (1990) Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications. Geochim Cosmochim Acta 54(9):2375–2388

    Google Scholar 

  • Kress VC, Carmichael IS (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Mineral Petrol 108(1–2):82–92

    Google Scholar 

  • Kusky TM, Glass A, Tucker R (2007) Structure, Cr-chemistry, and age of the border ranges Ultramafic–Mafic complex: a suprasubduction zone ophiolite complex. Geol Soc Am Spec Pap 431:207

    Google Scholar 

  • Laubier M, Grove TL, Langmuir CH (2014) Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: an experimental and laser ICP-MS study with application to the oxidation state of mantle source regions. Earth Planet Sci Lett 392:265–278

    Google Scholar 

  • Lee CTA, Leeman WP, Canil D, Li ZXA (2005) Similar V/Sc systematics in MORB and arc basalts: implications for the oxygen fugacities of their mantle source regions. J Petrol 46(11):2313–2336

    Google Scholar 

  • Lee CTA, Luffi P, Le Roux V, Dasgupta R, Albaréde F, Leeman WP (2010) The redox state of arc mantle using Zn/Fe systematics. Nature 468(7324):681–685

    Google Scholar 

  • Lee CTA, Luffi P, Chin EJ, Bouchet R, Dasgupta R, Morton DM, Le Roux V, Yin QZ, Jin D (2012) Copper systematics in arc magmas and implications for crust-mantle differentiation. Science 336(6077):64–68

    Google Scholar 

  • Li ZXA, Lee CTA (2004) The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts. Earth Planet Sci Lett 228(3–4):483–493

    Google Scholar 

  • Li J, Kornprobst J, Vielzeuf D, Fabriès J (1995) An improved experimental calibration of the olivine-spinel geothermometer. Chin J Geochem 14(1):68–77

    Google Scholar 

  • Lindsley DH, Frost BR (1992) Equilibria among Fe–Ti oxides, pyroxenes, olivine, and quartz: part I. Theory. Am Mineral 77(9–10):987–1003

    Google Scholar 

  • Mallmann G, O’Neill HSC (2009) The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). J Petrol 50(9):1765–1794

    Google Scholar 

  • Mallmann G, O’Neill HSC (2013) Calibration of an empirical thermometer and oxybarometer based on the partitioning of Sc, Y and V between olivine and silicate melt. J Petrol 54(5):933–949

    Google Scholar 

  • Markl G, Marks M, Wirth R (2001) The influence of T, aSiO2, and fO2 on exsolution textures in Fe–Mg olivine: an example from augite syenites of the Ilimaussaq Intrusion, South Greenland. Am Mineral 86(1–2):36–46

    Google Scholar 

  • Mattioli GS, Wood BJ (1988) Magnetite activities across the MgAl2O4–Fe3O4 spinel join, with application to thermobarometric estimates of upper mantle oxygen fugacity. Contrib Mineral Petrol 98(2):148–162

    Google Scholar 

  • Mehl L, Hacker BR, Hirth G, Kelemen PB (2003) Arc-parallel flow within the mantle wedge: Evidence from the accreted Talkeetna arc, south central Alaska. J Geophys Res. https://doi.org/10.1029/2002jb002233

    Article  Google Scholar 

  • Moore JG, Evans BW (1967) The role of olivine in the crystallization of the prehistoric Makaopuhi tholeiitic lava lake, Hawaii. Contrib Mineral Petrol 15(3):202–223

    Google Scholar 

  • Nandedkar RH, Ulmer P, Müntener O (2014) Fractional crystallization of primitive, hydrous arc magmas: an experimental study at 0.7 GPa. Contrib Mineral Petrol 167(6):1015

    Google Scholar 

  • Nebel O, Sossi PA, Benard A, Wille M, Vroon PZ, Arculus RJ (2015) Redox-variability and controls in subduction zones from an iron-isotope perspective. Earth Planet Sci Lett 432:142–151

    Google Scholar 

  • Newberry RJ, Burns LE, Pessel GH (1986) Volcanogenic massive sulfide deposits and the “missing complement” to the calc-alkaline trend; evidence from the Jurassic Talkeetna island arc of southern Alaska. Econ Geol 81(4):951–960

    Google Scholar 

  • Niu Y (2004) Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. J Petrol 45(12):2423–2458

    Google Scholar 

  • Osborn EF (1959) Role of oxygen pressure in the crystallization and differentiation of basaltic magma. Am J Sci 257(9):609–647

    Google Scholar 

  • Parkinson IJ, Arculus RJ (1999) The redox state of subduction zones: insights from arc-peridotites. Chem Geol 160(4):409–423

    Google Scholar 

  • Parkinson IJ, Pearce JA (1998) Peridotites from the Izu–Bonin–Mariana forearc (ODP Leg 125): evidence for mantle melting and melt–mantle interaction in a supra-subduction zone setting. J Petrol 39(9):1577–1618

    Google Scholar 

  • Parkinson IJ, Arculus RJ, Eggins SM (2003) Peridotite xenoliths from Grenada, Lesser Antilles island arc. Contrib Mineral Petrol 146(2):241–262

    Google Scholar 

  • Pavlis TL (1982) Origin and age of the Border Ranges fault of southern Alaska and its bearing on the late Mesozoic tectonic evolution of Alaska. Tectonics 1(4):343–368

    Google Scholar 

  • Pavlis TL (1983) Pre-Cretaceous crystalline rocks of the western Chugach Mountains, Alaska: nature of the basement of the Jurassic Peninsular terrane. Geol Soc Am Bull 94:1329–1344

    Google Scholar 

  • Plafker G, Nokleberg WJ, Lull JS (1989) Bedrock geology and tectonic evolution of the Wrangellia, Peninsular, and Chugach terranes along the Trans-Alaska Crustal Transect in the Chugach Mountains and southern Copper River Basin, Alaska. J Geophys Res Solid Earth 94(B4):4255–4295

    Google Scholar 

  • Presnall DC (1966) The join forsterite-diopside-iron oxide and its bearing on the crystallization of basaltic and ultramafic magmas. Am J Sci 264(10):753–809

    Google Scholar 

  • Prytulak J, Sossi PA, Halliday AN, Plank T, Savage PS, Woodhead JD (2017) Stable vanadium isotopes as a redox proxy in magmatic systems? Geochem Perspect Lett 3(1):75–84

    Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69(1):61–120

    Google Scholar 

  • Richards JP (2015) The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny. Lithos 233:27–45

    Google Scholar 

  • Rioux M, Hacker B, Mattinson J, Kelemen P, Blusztajn J, Gehrels G (2007) Magmatic development of an intra-oceanic arc: high-precision U–Pb zircon and whole-rock isotopic analyses from the accreted Talkeetna arc, south-central Alaska. Geol Soc Am Bull 119(9–10):1168–1184

    Google Scholar 

  • Rioux M, Mattinson J, Hacker B, Kelemen P, Blusztajn J, Hanghøj K, Gehrels G (2010) Intermediate to felsic middle crust in the accreted Talkeetna arc, the Alaska Peninsula and Kodiak Island, Alaska: an analogue for low-velocity middle crust in modern arcs. Tectonics 29(3):TC3001. https://doi.org/10.1029/2009TC002541

    Article  Google Scholar 

  • Roeder PL, Campbell IH (1985) The effect of postcumulus reactions on composition of chrome-spinels from the Jimberlana intrusion. J Petrol 26(3):763–786

    Google Scholar 

  • Rose AW (1966) Geology of chromite-bearing ultramafic rocks near Eklutna, Anchorage Quadrangle, Alaska. Alaska Division of Mines and Minerals. Geologic report 18, 1 sheet, scale 1:63,360

  • Sack RO, Ghiorso MS (1991a) An internally consistent model for the thermodynamic properties of Fe–Mg–titanomagnetite–aluminate spinels. Contrib Mineral Petrol 106:474–505

    Google Scholar 

  • Sack RO, Ghiorso MS (1991b) Chromian spinels as petrogenetic indicators: thermodynamic and petrologic applications. Am Mineral 76:827–847

    Google Scholar 

  • Sack RO, Ghiorso MS (1994a) Thermodynamics of multicomponent pyroxenes I. Formulation of general model. Contrib Mineral Petrol 116:277–286

    Google Scholar 

  • Sack RO, Ghiorso MS (1994b) Thermodynamics of multicomponent pyroxenes II. Applications to phase relations in the quadrilateral. Contrib Mineral Petrol 116:287–300

    Google Scholar 

  • Sack RO, Ghiorso MS (1994c) Thermodynamics of multicomponent pyroxenes III. Calibration of Fe2+(Mg)−1, TiAl(MgSi)−1, TiFe3+(MgSi)−1, AlFe3+(MgSi)−1, NaAl(CaMg)−1, Al2(MgSi)−1, and Ca(Mg)−1 exchange reactions between pyroxenes and silicate melts. Contrib Mineral Petrol 118:271–296

    Google Scholar 

  • Sato M (1978) Oxygen fugacity of basaltic magmas and the role of gas-forming elements. Geophys Res Lett 5(6):447–449

    Google Scholar 

  • Shaw DM (1970) Trace element fractionation during anatexis. Geochimica et Cosmochimica Acta 34(2):237–243

    Google Scholar 

  • Shejwalkar A, Coogan LA (2013) Experimental calibration of the roles of temperature and composition in the Ca-in-olivine geothermometer at 0.1 MPa. Lithos 177:54–60

    Google Scholar 

  • Shervais JW (1982) Ti–V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet Sci Lett 59(1):101–118

    Google Scholar 

  • Simkin T, Smith JV (1970) Minor-element distribution in olivine. J Geol 78(3):304–325

    Google Scholar 

  • Sisson TW, Ratajeski K, Hankins WB, Glazner AF (2005) Voluminous granitic magmas from common basaltic sources. Contrib Mineral Petrol 148(6):635–661

    Google Scholar 

  • Sisson TW, Kimura JI, Coombs ML (2009) Basanite–nephelinite suite from early Kilauea: carbonated melts of phlogopite–garnet peridotite at Hawaii’s leading magmatic edge. Contrib Mineral Petrol 158(6):803

    Google Scholar 

  • Sparks RSJ, Huppert HE, Kerr RC, McKenzie DP, Tait SR (1985) Postcumulus processes in layered intrusions. Geol Mag 122(5):555–568

    Google Scholar 

  • Stolper DA, Bucholz CE (2019) A Neoproterozoic to early Phanerozoic rise in island arc redox state due to deep ocean oxygenation and increased marine sulfate levels. Proc Natl Acad Sci 116(18):8746–8755

    Google Scholar 

  • Stolper E, Newman S (1994) The role of water in the petrogenesis of Mariana trough magmas. Earth Planet Sci Lett 121(3–4):293–325

    Google Scholar 

  • Stormer JC Jr (1973) Calcium zoning in olivine and its relationship to silica activity and pressure. Geochimica et Cosmochimica Acta 37(8):1815–1821

    Google Scholar 

  • Tait SR, Jaupart C (1992) Compositional convection in a reactive crystalline mush and melt differentiation. J Geophys Res Solid Earth 97(B5):6735–6756

    Google Scholar 

  • Tait SR, Huppert HE, Sparks RSJ (1984) The role of compositional convection in the formation of adcumulate rocks. Lithos 17:139–146

    Google Scholar 

  • Tang M, Erdman M, Eldridge G, Lee CTA (2018) The redox “filter” beneath magmatic orogens and the formation of continental crust. Sci Adv 4(5):eaar4444

    Google Scholar 

  • Toth MI (1981) Petrology, geochemistry, and origin of the Red Mountain ultramafic body near Seldovia, Alaska. USGS open-file report 81-514

  • Ulmer P, Kaegi R, Müntener O (2018) Experimentally derived intermediate to silica-rich arc magmas by fractional and equilibrium crystallization at 1.0 GPa: an evaluation of phase relationships, compositions, liquid lines of descent and oxygen fugacity. J Petrol 59(1):11–58

    Google Scholar 

  • Van Orman JA, Crispin KL (2010) Diffusion in oxides. Rev Mineral Geochem 72(1):757–825

    Google Scholar 

  • VanTongeren JA, Kelemen PB, Hanghøj K (2008) Cooling rates in the lower crust of the Oman ophiolite: Ca in olivine, revisited. Earth Planet Sci Lett 267(1–2):69–82

    Google Scholar 

  • Voigt M, von der Handt A (2011) Influence of subsolidus processes on the chromium number in spinel in ultramafic rocks. Contrib Mineral Petrol 162(4):675–689

    Google Scholar 

  • Wager LR, Brown GM, Wadsworth WJ (1960) Types of igneous cumulates. J Petrol 1(1):73–85

    Google Scholar 

  • Wang J, Xiong X, Takahashi E, Zhang L, Li L, Liu X (2019) Oxidation state of arc mantle revealed by partitioning of V, Sc, and Ti between mantle minerals and basaltic melts. J Geophys Res. https://doi.org/10.1029/2018JB016731

    Article  Google Scholar 

  • Warren JM (2016) Global variations in abyssal peridotite compositions. Lithos 248:193–219

    Google Scholar 

  • Williams HM, McCammon CA, Peslier AH, Halliday AN, Teutsch N, Levasseur S, Burg JP (2004) Iron isotope fractionation and the oxygen fugacity of the mantle. Science 304(5677):1656–1659

    Google Scholar 

  • Williams HM, Peslier AH, McCammon C, Halliday AN, Levasseur S, Teutsch N, Burg JP (2005) Systematic iron isotope variations in mantle rocks and minerals: the effects of partial melting and oxygen fugacity. Earth Planet Sci Lett 235(1–2):435–452

    Google Scholar 

  • Wilson AH (1982) The geology of the Great ‘Dyke’, Zimbabwe: the ultramafic rocks. J Petrol 23(2):240–292

    Google Scholar 

  • Wilson FH, Hults CP, Mull CG, Karl SM (2015) Geologic map of Alaska: U.S. Geological Survey Scientific Investigations Map 3340, pamphlet 196 p., 2 sheets, scale 1:1,584,000. http://dx.doi.org/10.3133/sim3340

  • Wood BJ (1990) An experimental test of the spinel peridotite oxygen barometer. J Geophys Res Solid Earth 95(B10):15845–15851

    Google Scholar 

  • Wood BJ, Virgo D (1989) Upper mantle oxidation state: ferric iron contents of lherzolite spinels by 57Fe Mössbauer spectroscopy and resultant oxygen fugacities. Geochim Cosmochim Acta 53(6):1277–1291

    Google Scholar 

  • Woodhead J, Eggins S, Gamble J (1993) High field strength and transition element systematics in island arc and back-arc basin basalts: evidence for multi-phase melt extraction and a depleted mantle wedge. Earth Planet Sci Lett 114(4):491–504

    Google Scholar 

  • Woodland AB, Kornprobst J, Wood BJ (1992) Oxygen thermobarometry of orogenic lherzolite massifs. J Petrol 33(1):203–230

    Google Scholar 

  • Woodland AB, Kornprobst J, McPherson E, Bodinier JL, Menzies MA (1996) Metasomatic interactions in the lithospheric mantle: petrologic evidence from the Lherz massif, French Pyrenees. Chem Geol 134(1–3):83–112

    Google Scholar 

  • Woodland AB, Kornprobst J, Tabit A (2006) Ferric iron in orogenic lherzolite massifs and controls of oxygen fugacity in the upper mantle. Lithos 89(1–2):222–241

    Google Scholar 

  • Zhang HL, Cottrell E, Solheid PA, Kelley KA, Hirschmann MM (2018) Determination of Fe3+/ΣFe of XANES basaltic glass standards by Mössbauer spectroscopy and its application to the oxidation state of iron in MORB. Chem Geol 479:166–175

    Google Scholar 

Download references

Acknowledgements

Samples used in this study were collected during fieldwork supported by NSF EAR grant #9910899 (PI P. Kelemen). We thank B. Wood for kindly providing spinel standards, C. Lee for sharing his thoughts and insights into modeling V/Sc ratios, conversations with E. Stolper, and C. Ma for assistance with electron microprobe analyses. Thoughtful reviews by T. Sisson and D. Canil helped to clarify and strengthen the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire E. Bucholz.

Additional information

Communicated by Timothy L. Grove.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 174 kb)

Supplementary material 2 (DOCX 1495 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bucholz, C.E., Kelemen, P.B. Oxygen fugacity at the base of the Talkeetna arc, Alaska. Contrib Mineral Petrol 174, 79 (2019). https://doi.org/10.1007/s00410-019-1609-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-019-1609-z

Keywords

Navigation