Skip to main content
Log in

The dark side of zircon: textural, age, oxygen isotopic and trace element evidence of fluid saturation in the subvolcanic reservoir of the Island Park-Mount Jackson Rhyolite, Yellowstone (USA)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Island Park-Mount Jackson series in the Yellowstone volcanic field, Wyoming (USA), is a suite of rhyolitic domes and lavas that erupted between the caldera-forming eruptions of the Mesa Fall Tuff (1.3 Ma) and the Lava Creek Tuff (0.6 Ma). Combined zircon U/Pb geochronology, Raman spectroscopy, oxygen isotopic and trace elemental compositions document storage conditions of these magmas between consecutive supereruptions. Based on comparison with co-erupted melt compositions and textural criteria, four zircon compositional groups are identified that record different stages along a continuous magmatic evolution from trace element-poor rhyolite at high temperatures to extremely fractionated rhyolite where zircon trace elements are highly enriched (e.g., > 1000 ppm U). These latter zircon domains are dark in cathodoluminescence images and show broadened Raman peaks relative to near-endmember zircon, indicating that substitution of non-stoichiometric trace elements into zircon leads to distortion of the crystal lattice. Some of these zircon domains contain inclusions of U-Th-REE-phases, likely originating from coupled dissolution–reprecipitation of metastable trace element-rich zircon in the presence of a fluid phase. Rhyolite-MELTS simulations indicate that at the conditions required to produce the observed enrichment in trace elements, a fluid phase is likely present. These findings illustrate that zircons can be assembled from a variety of co-existing magmatic environments in the same magma reservoir, including near-solidus volatile-rich melts close to the magmatic–hydrothermal transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alekseev V, Polyakova E, Machevariani M, Marin YB (2014) Evolution of zircons from postorogenic intrusive series with Li–F granites, Russian Far East. Geol Ore Deposits 56(7):513–530

    Article  Google Scholar 

  • Allaz J, Raschke MB, Persson PM, Stern CR (2015) Age, petrochemistry, and origin of a REE-rich mineralization in the Longs Peak-St. Vrain batholith, near Jamestown, Colorado (USA). Am Mineral 100(10):2123–2140

    Article  Google Scholar 

  • Åmli R, Griffin W (1975) Microprobe analysis of REE minerals using empirical correction factors. Am Mineral 60:599–606

    Google Scholar 

  • Anderson AJ, Wirth R, Thomas R (2008) The alteration of metamict zircon and its role in the remobilization of high-field-strength elements in the Georgeville granite, Nova Scotia. Can Mineral 46(1):1–18

    Article  Google Scholar 

  • Barboni M, Boehnke P, Schmitt AK, Harrison TM, Shane P, Bouvier A-S, Baumgartner L (2016) Warm storage for arc magmas. Proc Natl Acad Sci 113(49):13959–13964

    Article  Google Scholar 

  • Bindeman I (2008) Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. Rev Mineral Geochem 69(1):445–478

    Article  Google Scholar 

  • Bindeman IN, Valley JW (2001) Low-δ18O Rhyolites from Yellowstone: magmatic evolution based on analyses of Zircons and individual phenocrysts. J Petrol 42(8):1491–1517

    Article  Google Scholar 

  • Bindeman IN, Fu B, Kita NT, Valley JW (2008) Origin and evolution of silicic magmatism at yellowstone based on ion microprobe analysis of isotopically zoned zircons. J Petrol 49(1):163–193. https://doi.org/10.1093/petrology/egm075

    Article  Google Scholar 

  • Black LP, Kamo SL, Allen CM, Davis DW, Aleinikoff JN, Valley JW, Mundil R, Campbell IH, Korsch RJ, Williams IS (2004) Improved 206 Pb/238 U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chem Geol 205(1):115–140

    Article  Google Scholar 

  • Blundy J, Wood B (1994) Prediction of crystal-melt partition coefficients from elastic moduli. Nature 372(6505):452–454

    Article  Google Scholar 

  • Bryan SE, Ferrari L, Reiners PW, Allen CM, Petrone CM, Ramos-Rosique A, Campbell IH (2008) New insights into crustal contributions to large-volume rhyolite generation in the mid-Tertiary Sierra Madre Occidental province, Mexico, revealed by U–Pb geochronology. J Petrol 49(1):47–77

    Article  Google Scholar 

  • Buret Y, Wotzlaw J-F, Roozen S, Guillong M, von Quadt A, Heinrich CA (2017) Zircon petrochronological evidence for a plutonic-volcanic connection in porphyry copper deposits. Geology 45(7):623–626

    Article  Google Scholar 

  • Castor SB, Henry CD (2000) Geology, geochemistry, and origin of volcanic rock-hosted uranium deposits in northwestern Nevada and southeastern Oregon, USA. Ore Geol Rev 16(1):1–40

    Article  Google Scholar 

  • Chakhmouradian AR, Zaitsev AN (2012) Rare earth mineralization in igneous rocks: sources and processes. Elements 8(5):347–353

    Article  Google Scholar 

  • Chamberlain K, Wilson C, Wooden JL, Charlier B, Ireland T (2013) New perspectives on the Bishop Tuff from zircon textures, ages and trace elements. J Petrol 55(2):395–426

    Article  Google Scholar 

  • Charlier B, Wilson C, Lowenstern J, Blake S, Van Calsteren P, Davidson J (2005) Magma generation at a large, hyperactive silicic volcano (Taupo, New Zealand) revealed by U–Th and U–Pb systematics in zircons. J Petrol 46(1):3–32

    Article  Google Scholar 

  • Christiansen RL (2001) The quaternary and pliocene yellowstone plateau volcanic field of Wyoming, Idaho, and Montana. USGS Professional Paper 729-G

  • Cooper KM, Kent AJ (2014) Rapid remobilization of magmatic crystals kept in cold storage. Nature 506(7489):480

    Article  Google Scholar 

  • Corfu F (2003) Atlas of zircons textures. Rev Mineral Geochem 53:469–500

    Article  Google Scholar 

  • Driesner T, Heinrich CA (2007) The system H 2 O–NaCl. Part I: Correlation formulae for phase relations in temperature–pressure–composition space from 0 to 1000 °C, 0–5000 bar, and 0–1 X NaCl. Geochim Cosmochim Acta 71(20):4880–4901

    Article  Google Scholar 

  • Ellis B, Mark D, Troch J, Bachmann O, Guillong M, Kent A, von Quadt A (2017) Split-grain 40 Ar/39 Ar dating: Integrating temporal and geochemical data from crystal cargoes. Chem Geol 457:15–23

    Article  Google Scholar 

  • Ferriss E, Ewing R, Becker U (2010) Simulation of thermodynamic mixing properties of actinide-containing zircon solid solutions. Am Mineral 95(2–3):229–241

    Article  Google Scholar 

  • Ferry J, Watson E (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154(4):429–437

    Article  Google Scholar 

  • Förster H-J (2006) Composition and origin of intermediate solid solutions in the system thorite–xenotime–zircon–coffinite. Lithos 88(1):35–55

    Article  Google Scholar 

  • Geisler T, Schaltegger U, Tomaschek F (2007) Re-equilibration of zircon in aqueous fluids and melts. Elements 3(1):43–50

    Article  Google Scholar 

  • Grubbs FE (1969) Procedures for detecting outlying observations in samples. Technometrics 11(1):1–21

    Article  Google Scholar 

  • Hanchar JM, Finch RJ, Hoskin PW, Watson EB, Cherniak DJ, Mariano AN (2001) Rare earth elements in synthetic zircon: Part 1. Synthesis, and rare earth element and phosphorus doping. Am Mineral 86(5–6):667–680

    Article  Google Scholar 

  • Hayden LA, Watson EB (2007) Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon. Earth Planet Sci Lett 258(3):561–568

    Article  Google Scholar 

  • Hildreth W, Christiansen RL, O’Neil JR (1984) Catastrophic isotopic modification of rhyolitic magma at times of caldera subsidence, Yellowstone Plateau Volcanic Field. J Geophys Res 89(B10):8339. https://doi.org/10.1029/JB089iB10p08339

    Article  Google Scholar 

  • Holland HD, Gottfried D (1955) The effect of nuclear radiation on the structure of zircon. Acta Crystallogr A 8(6):291–300

    Article  Google Scholar 

  • Hoskin PW (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim Cosmochim Acta 69(3):637–648

    Article  Google Scholar 

  • Hoskin P, Kinny P, Wyborn D (1998) Chemistry of hydrothermal zircon: investigating timing and nature of water–rock interaction. Water Rock Interact 9:545–548

    Google Scholar 

  • Hoskin PW, Kinny PD, Wyborn D, Chapell BW (2000) Identifying accessory mineral saturation during differentiation in granitoid magmas: an integrated approach. J Petrol 41(9):1365–1396

    Article  Google Scholar 

  • Husen S, Smith RB, Waite GP (2004) Evidence for gas and magmatic sources beneath the Yellowstone volcanic field from seismic tomographic imaging. J Volcanol Geotherm Res 131(3):397–410

    Article  Google Scholar 

  • Jowitt SM, Medlin CC, Cas RA (2017) The rare earth element (REE) mineralisation potential of highly fractionated rhyolites: a potential low-grade, bulk tonnage source of critical metals. Ore Geol Rev 86:548–562

    Article  Google Scholar 

  • Kovaleva E, Harlov D, Klötzli U (2017) Complicated secondary textures in zircon record evolution of the host granitic rocks: Studies from Western Tauern Window and Ötztal-Stubai Crystalline Complex (Eastern Alps, Western Austria). Lithos 284:381–400

    Article  Google Scholar 

  • Lenz C, Nasdala L, Talla D, Hauzenberger C, Seitz R, Kolitsch U (2015) Laser-induced REE3+ photoluminescence of selected accessory minerals—an “advantageous artefact” in Raman spectroscopy. Chem Geol 415:1–16

    Article  Google Scholar 

  • Li XH, Long WG, Li QL, Liu Y, Zheng YF, Yang YH, Chamberlain KR, Wan DF, Guo CH, Wang XC (2010) Penglai zircon megacrysts: a potential new working reference material for microbeam determination of Hf–O isotopes and U–Pb age. Geostand Geoanal Res 34(2):117–134

    Article  Google Scholar 

  • London D, Hervig RL, Morgan GB (1988) Melt-vapor solubilities and elemental partitioning in peraluminous granite-pegmatite systems: experimental results with Macusani glass at 200 MPa. Contrib Mineral Petrol 99(3):360–373

    Article  Google Scholar 

  • Lünsdorf N, Lünsdorf J (2016) Evaluating Raman spectra of carbonaceous matter by automated, iterative curve-fitting. Int J Coal Geol 160:51–62

    Article  Google Scholar 

  • Matthews N, Vazquez J, Calvert A (2013) Concordant ages for the Lava Creek Tuff from high-spatial-resolution U-Pb dating of zircon rim faces and single-crystal sanidine 40Ar/39Ar dating. AGU Fall Meeting Abstracts 1:06

    Google Scholar 

  • Matthews NE, Vazquez JA, Calvert AT (2015) Age of the Lava Creek supereruption and magma chamber assembly at Yellowstone based on 40Ar/39Ar and U-Pb dating of sanidine and zircon crystals. Geochem Geophys Geosyst 16(8):2508–2528

    Article  Google Scholar 

  • Miller JS, Wooden JL (2004) Residence, resorption and recycling of zircons in Devils Kitchen rhyolite, Coso Volcanic field, California. J Petrol 45(11):2155–2170

    Article  Google Scholar 

  • Murakami T, Chakoumakos BC, Ewing RC, Lumpkin GR, Weber WJ (1991) Alpha-decay event damage in zircon. Am Mineral 76:1510–1532

    Google Scholar 

  • Obradovich JD (1992) Geochronology of the Late Cenozoic volcanism of Yellowstone National Park and adjoining areas, Wyoming and Idaho. USGS Open-File Report 92–408, pp 45

  • Park C, Song Y, Chung D, Kang I-M, Khulganakhuu C, Yi K (2016) Recrystallization and hydrothermal growth of high U–Th zircon in the Weondong deposit, Korea: record of post-magmatic alteration. Lithos 260:268–285

    Article  Google Scholar 

  • Pearce NJ, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Geoanal Res 21(1):115–144

    Article  Google Scholar 

  • Pettke T, Audétat A, Schaltegger U, Heinrich CA (2005) Magmatic-to-hydrothermal crystallization in the W–Sn mineralized Mole Granite (NSW, Australia): Part II: evolving zircon and thorite trace element chemistry. Chem Geol 220(3):191–213

    Article  Google Scholar 

  • Reid MR, Vazquez JA, Schmitt AK (2011) Zircon-scale insights into the history of a Supervolcano, Bishop Tuff, Long Valley, California, with implications for the Ti-in-zircon geothermometer. Contrib Mineral Petrol 161(2):293–311

    Article  Google Scholar 

  • Rivera TA, Schmitz MD, Crowley JL, Storey M (2014) Rapid magma evolution constrained by zircon petrochronology and 40Ar/39Ar sanidine ages for the Huckleberry Ridge Tuff, Yellowstone, USA. Geology 42(8):643–646

    Article  Google Scholar 

  • Rivera TA, Schmitz MD, Jicha BR, Crowley JL (2016) Zircon petrochronology and 40Ar/39Ar sanidine dates for the mesa falls tuff: crystal-scale records of magmatic evolution and the short lifespan of a large yellowstone magma chamber. J Petrol 57(9):1677–1704

    Google Scholar 

  • Robock A (2002) Volcanic eruptions and climate. Clim Change 38:305

    Google Scholar 

  • Rubatto D, Hermann J (2007) Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chem Geol 241(1):38–61

    Article  Google Scholar 

  • Rubin AE, Cooper KM, Till CB, Kent AJ, Costa F, Bose M, Gravley D, Deering C, Cole J (2017) Rapid cooling and cold storage in a silicic magma reservoir recorded in individual crystals. Science 356(6343):1154–1156

    Article  Google Scholar 

  • Schaltegger U (2007) Hydrothermal zircon. Elements 3(1):51–79

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32(5):751–767

    Article  Google Scholar 

  • Spandler C, Hermann J, Rubatto D (2004) Exsolution of thortveitite, yttrialite, and xenotime during low-temperature recrystallization of zircon from New Caledonia, and their significance for trace element incorporation in zircon. Am Mineral 89(11–12):1795–1806

    Article  Google Scholar 

  • Speer J (1980) Zircon. Rev Mineral Geochem 5(1):67–112

    Google Scholar 

  • Stelten ME, Cooper KM, Vazquez JA, Calvert AT, Glessner JJ (2015) Mechanisms and timescales of generating eruptible rhyolitic magmas at Yellowstone Caldera from zircon and sanidine geochronology and geochemistry. J Petrol 56(8):1607–1642

    Article  Google Scholar 

  • Stelten ME, Champion DE, Kuntz MA (2017) The timing and origin of pre-and post-caldera volcanism associated with the Mesa Falls Tuff, Yellowstone Plateau volcanic field. J Volcanol Geotherm Res 350:47–60

    Article  Google Scholar 

  • Szymanowski D, Wotzlaw J-F, Ellis BS, Bachmann O, Guillong M, von Quadt A (2017) Protracted near-solidus storage and pre-eruptive rejuvenation of large magma reservoirs. Nat Geosci 10(10):777

    Article  Google Scholar 

  • Thomas R, Webster J, Heinrich W (2000) Melt inclusions in pegmatite quartz: complete miscibility between silicate melts and hydrous fluids at low pressure. Contrib Mineral Petrol 139(4):394–401

    Article  Google Scholar 

  • Troch J, Ellis BS, Mark DF, Bindeman IN, Kent AJR, Guillong M, Bachmann O (2017) Rhyolite generation prior to a Yellowstone supereruption: Insights from the Island Park-Mount Jackson rhyolite series. J Petrol 0(0):1–24

    Google Scholar 

  • Van Lichtervelde M, Melcher F, Wirth R (2009) Magmatic vs. hydrothermal origins for zircon associated with tantalum mineralization in the Tanco pegmatite, Manitoba, Canada. Am Mineral 94(4):439–450

    Article  Google Scholar 

  • Vazquez JA, Kyriazis SF, Reid MR, Sehler RC, Ramos FC (2009) Thermochemical evolution of young rhyolites at Yellowstone: evidence for a cooling but periodically replenished postcaldera magma reservoir. J Volcanol Geotherm Res 188(1–3):186–196. https://doi.org/10.1016/j.jvolgeores.2008.11.030

    Article  Google Scholar 

  • Vazquez JA, Velasco NO, Schmitt AK, Bleick HA, Stelten ME (2014) 238 U–230 Th dating of chevkinite in high-silica rhyolites from La Primavera and Yellowstone calderas. Chem Geol 390:109–118

    Article  Google Scholar 

  • Veksler IV, Thomas R, Schmidt C (2002) Experimental evidence of three coexisting immiscible fluids in synthetic granitic pegmatite. Am Mineral 87(5–6):775–779

    Article  Google Scholar 

  • Wang D, Wang X-L, Cai Y, Chen X, Zhang F-R, Zhang F-F (2017) Heterogeneous conservation of zircon xenocrysts in late jurassic granitic intrusions within the Neoproterozoic Jiuling Batholith, South China: a magma chamber growth model in deep crustal hot zones. J Petrol 58(9):1781–1810

    Article  Google Scholar 

  • Watson EB (1985) Henry’s law behavior in simple systems and in magmas: criteria for discerning concentration-dependent partition coefficients in nature. Geochim Cosmochim Acta 49(4):917–923

    Article  Google Scholar 

  • Weber WJ, Ewing RC, Wang L-M (1994) The radiation-induced crystalline-to-amorphous transition in zircon. J Mater Res 9(3):688–698

    Article  Google Scholar 

  • Webster J, Holloway J, Hervig R (1989) Partitioning of lithophile trace elements between H2O and H2O + CO2 fluids and topaz rhyolite melt. Econ Geol 84(1):116–134

    Article  Google Scholar 

  • Wiedenbeck M, Alle P, Corfu F, Griffin W, Meier M, Oberli FV, Quadt AV, Roddick J, Spiegel W (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand Geoanal Res 19(1):1–23

    Article  Google Scholar 

  • Wiedenbeck M, Hanchar JM, Peck WH, Sylvester P, Valley J, Whitehouse M, Kronz A, Morishita Y, Nasdala L, Fiebig J (2004) Further characterisation of the 91500 zircon crystal. Geostand Geoanal Res 28(1):9–39

    Article  Google Scholar 

  • Wotzlaw J-F, Bindeman IN, Stern RA, D’Abzac F-X, Schaltegger U (2015) Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions. Sci Rep 5:14026

    Article  Google Scholar 

  • Yin R, Wang RC, Zhang A-C, Hu H, Zhu JC, Rao C, Zhang H (2013) Extreme fractionation from zircon to hafnon in the Koktokay No. 1 granitic pegmatite, Altai, northwestern China. Am Mineral 98(10):1714–1724

    Article  Google Scholar 

  • Zajacz Z, Halter WE, Pettke T, Guillong M (2008) Determination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions: controls on element partitioning. Geochim Cosmochim Acta 72(8):2169–2197

    Article  Google Scholar 

  • Zeng L-J, Niu H-C, Bao Z-W, Yang W-B (2017) Chemical lattice expansion of natural zircon during the magmatic-hydrothermal evolution of A-type granite. Am Mineral 102(3):655–665

    Article  Google Scholar 

  • Zhang M, Salje EK, Farnan I, Graeme-Barber A, Daniel P, Ewing RC, Clark AM, Leroux H (2000) Metamictization of zircon: Raman spectroscopic study. J Phys Condens Matter 12(8):1915

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by an ETH research grant (ETH-05 13-2 covering J.T.). The HIP facility at Heidelberg University is operated under the auspices of the DFG Scientific Instrumentation and Information Technology programme. We thank Christie Hendrix and Stacey Gunther from the Yellowstone National Park Service for their assistance with research permits (Yellowstone permit YELL-05940), Lukas Martin and Julien Allaz (ETH) for assistance with EPMA and Jörn-Frederik Wotzlaw for discussions. We are grateful to Ilya Bindeman, Matt Loewen and an anonymous reviewer for their constructive and careful reviews, and to Othmar Müntener for editorial handling. John Wolff, Mark Stelten, Paul Nex and Matthieu Galvez are thanked for providing additional comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Troch.

Additional information

Communicated by Othmar Müntener.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 2593 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Troch, J., Ellis, B.S., Schmitt, A.K. et al. The dark side of zircon: textural, age, oxygen isotopic and trace element evidence of fluid saturation in the subvolcanic reservoir of the Island Park-Mount Jackson Rhyolite, Yellowstone (USA). Contrib Mineral Petrol 173, 54 (2018). https://doi.org/10.1007/s00410-018-1481-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-018-1481-2

Keywords

Navigation