Nanogeochemistry of hydrothermal magnetite

  • Artur P. Deditius
  • Martin Reich
  • Adam C. Simon
  • Alexandra Suvorova
  • Jaayke Knipping
  • Malcolm P. Roberts
  • Sergey Rubanov
  • Aaron Dodd
  • Martin Saunders
Original Paper


Magnetite from hydrothermal ore deposits can contain up to tens of thousands of parts per million (ppm) of elements such as Ti, Si, V, Al, Ca, Mg, Na, which tend to either structurally incorporate into growth and sector zones or form mineral micro- to nano-sized particles. Here, we report micro- to nano-structural and chemical data of hydrothermal magnetite from the Los Colorados iron oxide–apatite deposit in Chile, where magnetite displays both types of trace element incorporation. Three generations of magnetites (X–Z) were identified with concentrations of minor and trace elements that vary significantly: SiO2, from below detection limit (bdl) to 3.1 wt%; Al2O3, 0.3–2.3 wt%; CaO, bdl–0.9 wt%; MgO, 0.02–2.5 wt%; TiO2, 0.1–0.4 wt%; MnO, 0.04–0.2 wt%; Na2O, bdl–0.4 wt%; and K2O, bdl–0.4 wt%. An exception is V2O3, which is remarkably constant, ranging from 0.3 to 0.4 wt%. Six types of crystalline nanoparticles (NPs) were identified by means of transmission electron microscopy in the trace element-rich zones, which are each a few micrometres wide: (1) diopside, (2) clinoenstatite; (3) amphibole, (4) mica, (5) ulvöspinel, and (6) Ti-rich magnetite. In addition, Al-rich nanodomains, which contain 2–3 wt% of Al, occur within a single crystal of magnetite. The accumulation of NPs in the trace element-rich zones suggest that they form owing to supersaturation from a hydrothermal fluid, followed by entrapment during continuous growth of the magnetite surface. It is also concluded that mineral NPs promote exsolution of new phases from the mineral host, otherwise preserved as structurally bound trace elements. The presence of abundant mineral NPs in magnetite points to a complex incorporation of trace elements during growth, and provides a cautionary note on the interpretation of micron-scale chemical data of magnetite.


Magnetite Nanoparticles Zoning Los Colorados 



Martin Reich acknowledges funding from MSI Millennium Nucleus for Metal Tracing Along Subduction (NC130065). The authors acknowledge the facilities, and the scientific and technical assistance of the Australian Microscopy and Microanalysis Research Facility at the Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, a facility funded by the University, and by State and Commonwealth Governments. The comments from Jeffrey L. Mauk, Patrick Nadoll, and Othmar Münthener greatly improved the quality of the manuscript.

Supplementary material

410_2018_1474_MOESM1_ESM.xlsx (365 kb)
Supplementary material 1 (XLSX 364 KB)


  1. Arato R, Audetat A (2016) Experimental calibration of a new oxybarometer for silicic magmas based on vanadium partitioning between magnetite and silicate melt. Geochim Cosmochim Acta 209:284–295CrossRefGoogle Scholar
  2. Arato R, Audetat A (2017) Vanadium magnetite-melt oxybarometry of natural, silicic magmas: a comparison of various oxybarometers and thermometers. Contrib Miner Petrol 172:52CrossRefGoogle Scholar
  3. Armstrong JT (1988) Quantitative analysis of silicates and oxide minerals: Comparison of Monte-Carlo, ZAF, and Phi-Rho-Z procedures. Microbeam Analysis, pp 239–246Google Scholar
  4. Bilenker LD, Simon AC, Reich M, Lundstrom CC, Gajos N, Bindeman I, Barra F, Munizaga R (2016) Fe–O stable isotope pairs elucidate a high-temperature origin of Chilean iron oxide-apatite deposits. Geochim Cosmochim Acta 177:94–104CrossRefGoogle Scholar
  5. Bosi F, Hålenius U, Skogby H (2009) Crystal chemistry of the magnetite-ulvöspinel series. Am Mineral 94:181–189CrossRefGoogle Scholar
  6. Boutroy E, Dare SAS, Beaudoin G, Barnes S-J, Lightfoot P (2014) Magnetite composition in Ni–Cu–PGE deposits worldwide: application to mineral exploration. J Geochem Exp 145:64–81CrossRefGoogle Scholar
  7. Buddington AF, Lindsley DH (1964) Iron-titanium oxide minerals and synthetic equivalents. J Petrol 5:310–357CrossRefGoogle Scholar
  8. Charlier B, Namur O, Bolle O, Latypov R, Duchesne J-C (2015) Fe–Ti–V ore deposits associated with Proterozoic massif-type anorthosites and related rocks. Earth Sci Rev 141:56–81CrossRefGoogle Scholar
  9. Ciobanu CL, Cook NJ, Utsunomiya S, Pring A, Green L (2011) Focussed ion beam-transmission electron microscopy applications in ore mineralogy: bridging micro-and nanoscale observations. Ore Geol Rev 42:6–31CrossRefGoogle Scholar
  10. Colás V, Padrón-Navarta JA, González-Jiménez J-M, Griffin WL, Fanlo I, O’Reilly SY, Geervilla F, Proenza JA, Pearson NJ, Escayola MP (2015) Compositional effects on the solubility of minor and trace elements in oxide spinel minerals: insights from crystal-chemical partition coefficients in chromite exsolution. Am Mineral 101:1360–1372CrossRefGoogle Scholar
  11. Connoly HC Jr, Burnett DS (2003) On type B CAI formation: experimental constraints on fO2 variations in spinel minor element partitioning and reequilibration. Geochim Cosmochim Acta 67:4429–4434CrossRefGoogle Scholar
  12. Dare SAS, Barnes S-J, Beaudoin G (2012) Variation in trace element content of magnetite crystallized from a fractionating sulphide liquid, Sudbury, Canada: Implications for provenance discrimination. Geochim Cosmochim Acta 88:27–50CrossRefGoogle Scholar
  13. Dare SAS, Barnes S-J, Beaudoin G, Méric J, Boutroy E, Potvin-Doucet C (2014) Trace elements in magnetite as petrogenetic indicators. Miner Dep 49:785–796CrossRefGoogle Scholar
  14. Dare SAS, Barnes S-J, Beaudoin G (2015) Did the massive magnetite “lava flows” of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS. Miner Dep 5:607–617CrossRefGoogle Scholar
  15. Davis KJ, Dove PM, De Yoreo JJ (2000) The role of Mg2+ as an impurity in calcite growth. Science 290:1134–1137CrossRefGoogle Scholar
  16. Deditius AP, Utsunomiya S, Ewing RC, Chryssoulis SL, Venter D, Kesler SE (2009) Decoupled geochemical behaviour of As and Cu in hydrothermal systems. Geology 37:707–710CrossRefGoogle Scholar
  17. Deditius AP, Kesler SE, Utsunomiya S, Reich M, Ewing RC (2011) Structural and chemical discontinuities in pyrite. Let’s talk of ore deposits, vols I and II, pp 258–260Google Scholar
  18. Dobrzhinetskaya LF, Wirth R, Rhede D, Liu Z, Green HW (2009) Phlogopite and quartz lamellae in diamond-bearing diopside from marbles of the Kokchetav massif, Kazakhstan: exsolution or replacement reaction? J Metamorph Geol 27:607–620CrossRefGoogle Scholar
  19. Donovan JJ, Tingle TN (1996) An improved mean atomic number correction for quantitative microanalysis. J Microsc 2:1–7Google Scholar
  20. Donovan JJ, Snyder DA, Rivers ML (1993) An improved interference correction for trace element analysis. Microbeam Anal 2:23–28Google Scholar
  21. Donovan JJ, Singer JW, Armstrong JT (2016) A new method for fast trace element analysis in simple matrices. Am Mineral 101:1839–1853CrossRefGoogle Scholar
  22. Dupuis C, Beaudoin G (2011) Discrimination diagrams for iron oxide trace element fingerprinting of mineral deposit types. Miner Dep 46:319–335CrossRefGoogle Scholar
  23. Gaspar JC, Wyllie PJ (1983) Magnetite in carbonates from the Jacupiranga Complex, Brazil. Am Mineral 68:195–213Google Scholar
  24. Goldschmidt VM (1954) Geochemistry. Oxford University Press, OxfordGoogle Scholar
  25. Golla-Schindler U, O’Neill HSC, Putnis A (2005) Direct observation of spinodal decomposition in the magnetite-hercynite system by susceptibility measurements and transmission electron microscopy. Am Mineral 90:1278–1283CrossRefGoogle Scholar
  26. Günther T, Klemd R, Zhang X, Horn I, Weyer S (2017) In-situ trace element and Fe-isotope studies on magnetite of the volcanic-hosted Zhibo and Chagangnuoer iron ore deposits in the Western Tianshan, NW China. Chem Geol 453:111–127CrossRefGoogle Scholar
  27. Guzmics T, Mitchell RH, Szabó C, Berkesi M, Milke R, Abart R (2011) Carbonatite melt inclusions in coexisting magnetite, apatite and monticellite in Kerimasi calciocarbonatite, Tanzania: melt evolution and petrogenesis. Contrib Mineral Petrol 161:177–196CrossRefGoogle Scholar
  28. Haggarty SE (2016) Spinel in planetary systems. Am Mineral 101:5–6CrossRefGoogle Scholar
  29. Harrison R, Dunin-Borkowski RE, Putnis A (2002) Direct imaging of nanoscale magnetic interactions in minerals. PNAS 99:16556–16561CrossRefGoogle Scholar
  30. Heidarian H, Lentz D, Alirazaei S, Peighambari S, Hall D (2016) Using the chemical analysis of magnetite to constrain various stages in the formation and genesis of the Kiruna–type Chadormalu magnetite-apatite deposit, Bafq district, Central Iran. Mineral Petrol 110:927–942CrossRefGoogle Scholar
  31. Henderson CMB, Pearce CI, Charnock JM, Harrison RJ, Rosso KM (2016) An X-ray magnetic circular dichroism (XMCD) study of Fe ordering in a synthetic MgAl2O4–Fe3O4 (spinel-magnetite) solid solution series: Implications for magnetic properties and cation site ordering. Am Mineral 100:1373–1388CrossRefGoogle Scholar
  32. Hu H, Lentz D, Li L-W, McCarron T, Zhao X-F, Hall D (2014a) Reequilibration processes in magnetite from iron skarn deposits. Econ Geol 110:1–8CrossRefGoogle Scholar
  33. Hu H, Li L-W, Lentz D, Ren Z, Zhao X-F, Deng X-D, Hall D (2014b) Dissolution-reprecipitation process of magnetite from the Chengchao iron deposit: Insights into ore genesis and implication for in-situ chemical analysis of magnetite. Ore Geol Rev 57:393–405CrossRefGoogle Scholar
  34. Huberty JM, Konishi H, Heck PR, Fournelle JH, Valley JW, Xu H (2012) Silician magnetite from the Dales Gorge Member of the Brockman Iron Formation, Hamersley Group, Western Australia. Am Mineral 97:26–37CrossRefGoogle Scholar
  35. Ilton ES, Eugster HP (1990) Partitioning of base metals between silicates, oxides, and chloride-rich hydrothermal fluid: part I. Evaluation of data derived from experimental and natural assemblages. In: Spencer RJ, Chou I-M (eds) Fluid mineral interaction: a tribute to H.P. Eugster. The geochemical Society, Special Publications, No. 2, pp 157–169Google Scholar
  36. Klemm DD, Von Grunewaldt G, Henckel J, Dehm R (1985) The geochemistry of titanomagnetite in magnetite layers and their host rocks. Econ Geol 80:1075–1088CrossRefGoogle Scholar
  37. Knipping JL, Bilkner LD, Simon AC, Reich M, Barra F, Deditius AP, Lundstrom C, Wälle M, Heinrich CA, Holtz F, Munizaga R (2015a) Trace element distribution in magnetite as key to a new magmatic-hydrothermal model for Kiruna-type iron oxide-apatite deposits. Geochim Cosmochim Acta 171:15–38CrossRefGoogle Scholar
  38. Knipping JL, Bilkner LD, Simon AC, Reich M, Barra F, Deditius AP, Lundstrom C, Bindeman I, Munizaga R (2015b) Giant Kiruna-type deposits form by efficient aggregation of magmatic magnetite suspensions. Geology 43:591–594CrossRefGoogle Scholar
  39. Kouchi A, Sugawara Y, Kashima K, Sunagawa I (1983) Laboratory growth of sector zoned clinopyroxenes in the system CaMgSi2O6-CaTiAl2O6. Contrib Mineral Petrol 83:177–184CrossRefGoogle Scholar
  40. Liu P-P, Zhou M-F, Chen WT, Boone M, Cnudde V (2014) Using multiphase solid inclusions to constrain the origin of the Baima Fe–Ti–(V) oxide deposit, SW China. J Petrol 55:951–976CrossRefGoogle Scholar
  41. Nadoll P, Mauk JL, Hayes TS, Koenig AE, Box SE (2012) Geochemistry of magnetite from hydrothermal ore deposits and host rocks of Mesoproterozoic Belt Supergroup, United States. Econ Geol 107:1275–1292CrossRefGoogle Scholar
  42. Nadoll P, Angerrer T, Mauk JL, French D, Walshe J (2014) The chemistry of hydrothermal magnetite: a review. Ore Geol Rev 61:1–32CrossRefGoogle Scholar
  43. Nadoll P, Mauk JL, Hayes TS, Koenig AE, Box SE (2017) Element partitioning in magnetite under low-grade metamorphic conditions—a case study from the Proterozoic Belt Supergroup, USA. Eur J Mineral 29:795–805CrossRefGoogle Scholar
  44. Neumann E-R, Svensen HH, Polozov AZ, Hammer Ø (2017) Formation of Si-Al-Mg-Ca-rich zoned magnetite and end-Permian phretomagmatic pipe in the Tunguska Basin, East Siberia. Miner Dep. Google Scholar
  45. Newberry NG, Peacor DR, Essene EJ, Geissman JW (1982) Silicon in magnetite: high resolution microanalysis of magnetite-ilmenite intergrowths. Contrib Mineral Petrol 80:334–340CrossRefGoogle Scholar
  46. Papike JJ, Purger PV, Bell AS, Shearer CK, Le L, Jones J (2015) Normal to inverse transition in martian spinel: understanding the interplay between chromium, vanadium, and iron valence state partitioning through a crystal-chemical lens. Am Mineral 100:2018–2025CrossRefGoogle Scholar
  47. Price GD (1981) Subsolidus phase relations in the titanomagnetite solid solution series. Am Mineral 66:751–758Google Scholar
  48. Putnis A (2009) Mineral replacement reactions. Rev Mineral Geochem 70:87–124CrossRefGoogle Scholar
  49. Putnis A, Fernandez-Diaz L, Prieto M (1992) Experimentally produced oscillatory zoning in the (Ba,Sr)SO4 solid solution. Nature 358:743–745CrossRefGoogle Scholar
  50. Reguir EP, Chakhmouradian AR, Halden NM, Yang P, Zaitsev AN (2008) Early magmatic and reaction induced trends in magnetite from the carbonatites of Kerimasi, Tanzania. Can Mineral 46:879–900CrossRefGoogle Scholar
  51. Reich M, Deditius A, Chryssoulis S, Li J-W, Ma C-Q, Parada MA, Barra F, Mittermayr F (2013) Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: a SIMS/EPMA trace element study. Geochem Cosmochim Acta 104:42–62CrossRefGoogle Scholar
  52. Reich M, Simon AC, Deditius A, Barra F, Chryssoulis S, Lagas G, Tardani D, Knipping J, Bilenker L, Sánchez-Alfaro P, Roberts MP, Munizaga R (2016) Trace element signature of pyrite from the Los Colorados iron oxide-apatite (IOA) deposit, Chile: a missing link between Andean IOA and IOCG systems? Econ Geol 111:743–761CrossRefGoogle Scholar
  53. Rodgers DR, Arnott RJ, Wold A, Goodenough JB (1963) The preparation and properties of some vanadium spinels. Phys Chem Solids 24:347–360CrossRefGoogle Scholar
  54. Shore M, Fowler AD (1996) Oscillatory zoning in minerals: a common phenomenon. Can Mineral 34:1111–1126Google Scholar
  55. Shtuckenberg AG, Punin YO, Artamova OI (2009) Effect of crystal composition and growth rate on sector zoning in solid solutions grown from aqueous solutions. Mineral Mag 73:385–398CrossRefGoogle Scholar
  56. Sievwright RH, Wilkinson JJ, O’Neil HSC, Berry AJ (2017) Thermodynamic controls on element partitioning between titanomagnetite and andesitic–dacitic silicate melts. Contrib Mineral Petrol 172:62CrossRefGoogle Scholar
  57. Sitzman SD, Banfield JF, Valley JW (2000) Microstructural characterization of metamorphic magnetite crystals with implications for oxygen isotope distribution. Am Mineral 85:14–21CrossRefGoogle Scholar
  58. Sossi PA, Prytulak J, O’Neill HSC (2018) Experimental calibration of vanadium partitioning and stable isotopes fractionation between hydrous granitic melt and magnetite at 800 °C and 0.5 GPa. Contrib Mineral Petrol 173:27CrossRefGoogle Scholar
  59. Stowell H, Zuluaga C, Boyle A, Bulman G (2011) Garnet sector and oscillatory zoning linked with changes in crystal morphology during rapid growth, North Cascades, Washington. Am Mineral 96:1354–1362CrossRefGoogle Scholar
  60. Tardani D, Reich M, Deditius AP, Chryssoulis S, Sánchez-Alfaro P, Wrage J (2017) Cu–As decoupling in an active geothermal system: a link between pyrite and fluid composition. Geochim Cosmochim Acta, 204:179–204CrossRefGoogle Scholar
  61. Tauson VL, Smagunov NV, Lipko SV (2017) Cocrystallization coefficients of Cr, V, and Fe in hydrothermal ore systems (from experimental data). Russ Geol Geophys 58:949–955CrossRefGoogle Scholar
  62. Toplis M, Corgne A (2002) An experimental study of element partitioning between magnetite, clinopyroxene and iron-bearing silicate liquid with particular emphasis on vanadium. Contrib Mineral Petrol 144:22–27CrossRefGoogle Scholar
  63. Utsunomiya S, Ewing RC (2003) Application of high-angle annular dark field scanning transmission microscopy, scanning transmission electron microscope-energy dispersive X-ray spectrometry, and energy-filtered transmission electron microscopy to the characterization of nanoparticles in the environment. Environ Sci Technol 37:786–791CrossRefGoogle Scholar
  64. Velasco F, Tornos F, Hanchar FM (2016) Immiscible iron- and silica-rich melts and magnetite geochemistry at the El Laco volcano (northern Chile): evidence for a magmatic origin for the magnetite deposits. Ore Geol Rev 79:346–366CrossRefGoogle Scholar
  65. von Grunewaldt G, Klemm DD, Henckel J, Dehm RM (1985) Exsolution features in titanomagnetite from massive magnetite layers and their host rocks of the Upper Zone, Eastern Bushveld Complex. Econ Geol 80:1049–1061CrossRefGoogle Scholar
  66. Wang YG, Ye HQ, Ximen LL, Kuo KH (1989) A HRTEM study of the intergrowth of magnetite and coulsonite. Acta Crystallogr A45:264–268CrossRefGoogle Scholar
  67. Watson EB (1996) Surface enrichment and trace-element uptake during crystal growth. Geochim Cosmochim Acta 60:5013–5020CrossRefGoogle Scholar
  68. Watson EB (2004) A conceptual model for near-surface kinetic controls on the trace-element and stable isotope composition of abiogenic calcite crystals. Geochim Cosmochim Acta 68:1473–1488CrossRefGoogle Scholar
  69. Watson EB, Liang Y (1995) A simple model for sector zoning in slowly grown crystals: implications for growth rate and lattice diffusion, with emphasis pm accessory minerals in crystal rocks. Am Mineral 80:1179–1187CrossRefGoogle Scholar
  70. Weinbruch S, Styrsa V, Müller WF (2003) Exsolution and coarsening in iron-free clinopyroxene during isothermal annealing. Geochim Cosmochim Acta 67:5071–5082CrossRefGoogle Scholar
  71. Xie Q, Zhang Z, Hou T, Jin Z, Santosh M (2017) Geochemistry and oxygen isotope composition of magnetite from the Zhangmatun deposit, North China: Implications for the magmatic-hydrothermal evolution of Cornwall-type iron mineralization. Ore Geol Rev 88:57–70CrossRefGoogle Scholar
  72. Xu H, Shen Z, Konishi H (2014) Si-magnetite nano-precipitates in silician magnetite from banded iron formation: Z-contrast imaging and ab initio study. Am Mineral 99:2196–2202CrossRefGoogle Scholar
  73. Yang Y-L, Ni P, Wang G-G, Xu Y-F (2017) Constraints on the mineralization processes of the Makeng iron deposit, eastern China: fluid inclusion, H-O isotope and magnetite trace element analysis. Ore Geol Rev 88:791–808CrossRefGoogle Scholar
  74. Zhao WW, Zhou M-F (2015) In-situ LA-ICP-MS trace elemental analysis of magnetite: the Mesozoic Tengite skarn Fe deposit in the Nanling Range, South China. Ore Geol Rev 65:872–883CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Artur P. Deditius
    • 1
  • Martin Reich
    • 2
    • 3
  • Adam C. Simon
    • 4
  • Alexandra Suvorova
    • 5
  • Jaayke Knipping
    • 4
  • Malcolm P. Roberts
    • 5
  • Sergey Rubanov
    • 6
  • Aaron Dodd
    • 5
  • Martin Saunders
    • 5
  1. 1.School of Engineering and Information TechnologyMurdoch UniversityPerthAustralia
  2. 2.Department of Geology, FCFMUniversity of ChileSantiagoChile
  3. 3.Andean Geothermal Center of Excellence (CEGA), FCFMUniversity of ChileSantiagoChile
  4. 4.Department of Earth SciencesUniversity of MichiganAnn ArborUSA
  5. 5.Centre for Microscopy, Characterisation and Analysis (CMCA)The University of Western AustraliaPerthAustralia
  6. 6.Bio21 InstituteUniversity of MelbourneMelbourneAustralia

Personalised recommendations