Skip to main content
Log in

Phase equilibria in the KFeS2–Fe–S system at 300–600 °C and bartonite stability

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The article deals with phase relations in the KFeS2–Fe–S system studied by the dry synthesis method in the range of 300–600 °C and at a pressure of 1 bar. At the temperature below 513 ± 3 °C, pyrite coexists with rasvumite and there are pyrite–rasvumite–KFeS2 and pyrite–rasvumite–pyrrhotite equilibria established. Above 513 ± 3 °C pyrite and rasvumite react to form KFeS2 and pyrrhotite, limiting the pyrite–rasvumite association to temperatures below this in nature. The experiments also outline the compositional stability range of the copper-free analog of murunskite (K x Fe2−yS2) and suggest that mineral called bartonite is not stable in the Cl-free system, at least at atmospheric pressure and the temperature in the experiments. Chlorbartonite could be easily produced after adding KCl in the experiment. Possible parageneses in the quaternary K–Fe–S–Cl system were described based on the data obtained in this research and found in the previous studies. The factors affecting the formation of potassium–iron sulfides in nature were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amthauer G, Bente K (1983) Mixed-valent iron in synthetic rasvumite, KFe2S3. Naturwissenschaften 70:146–147. https://doi.org/10.1007/BF00401605

    Article  Google Scholar 

  • Azarova YV, Krinov DI, Sokolova MN (2006) A structural and genetic relationship of djerfisherite and bartonite, and the problem of isomorphous substitutions in the system djerfisherite–“Cu-djerfisherite”–bartonite (in Russian). New Data Miner 41:98–107

    Google Scholar 

  • Balabonin NL, Voloshin AV, Pakhomovsky JA, Poljakov KI (1980) The composition of djerfisherite in alkali complexes of the Kola Peninsula (in Russian). Mineral J 2:90–99

    Google Scholar 

  • Barkov AI, Laajoki KVO, Gehor SA et al (1997) Chlorine-poor analogues of Djerfisherite–Thalfenisite from Noril’sk, Siberia and Salmagorsky, Kola Peninsula, Russia. Can Mineral 35:1421–1430

    Google Scholar 

  • Barkov AY, Martin RF, Cabri LJ (2015) Rare sulfides enriched in K, Tl and Pb from the Noril’sk and Salmagorsky complexes, Russia: new data and implications. Mineral Mag 79:799–808. https://doi.org/10.1180/minmag.2015.079.3.20

    Article  Google Scholar 

  • Boller H (2004) On the synthesis, crystal chemistry and magnetic properties of rasvumite and related compound. Found Crystallogr 60:47

    Article  Google Scholar 

  • Boller H (2009) Some applications of the bond valence model to transition metal chalcogenides. J Alloys Compd 480:131–133. https://doi.org/10.1016/j.jallcom.2008.09.170

    Article  Google Scholar 

  • Boon JW, Mac Gillavry CH (1942) The crystal structure of potassium thioferrite KFeS2 and sodium thiochromite NaCrS2. Recl Trav Chim Pays Bas 61:910–920. https://doi.org/10.1002/recl.19420611214

    Article  Google Scholar 

  • Brauer G (ed) (1963) Handbook of preparative inorganic chemistry, vol 2, 2 edn. Academic Press, New York

    Google Scholar 

  • Bronger W, Ruschewitz U (1993) New ternary iron chalcogenides A9Fe2X7 (A = K, Rb, Cs; X = S, Se): synthesis, crystal structure and magnetic properties. J Alloys Compd 197:83–86. https://doi.org/10.1016/0925-8388(93)90622-T

    Article  Google Scholar 

  • Bronger W, Ruschewitz U, MüllerP (1995) New ternary iron sulphides A3Fe2S4 (A = K, Rb, Cs): syntheses and crystal structures. J Alloys Compd 218:22–27

    Article  Google Scholar 

  • Clark J, Brown GE (1980) Crystal structure of rasvumite, KFe2S3. Am Mineral 65:477–482

    Google Scholar 

  • Clarke DB (1979) Synthesis of nickeloan djerfisherites and the origin of potassic sulphides at the Frank Smith Mine. In: The mantle sample: inclusion in kimberlites and other volcanics. American Geophysical Union, Washington, pp 300–308

    Chapter  Google Scholar 

  • Clarke DB, Pe GG, Mackay RM et al (1977) A new potassium–iron–nickel sulphide from a nodule in kimberlite. Earth Planet Sci Lett 35:421–428. https://doi.org/10.1016/0012-821X(77)90075-9

    Article  Google Scholar 

  • Clarke DB, Mitchell RH, Chapman CAT, Mackay RM (1994) Occurrence and origin of djerfisherite from the Elwin Bay kimberlite, Somerset Island, Northwest Territories. Can Mineral 32:815–823

    Google Scholar 

  • Clay PL, O’Driscoll B, Upton BGJ, Busemann H (2014) Characteristics of djerfisherite from fluid-rich, metasomatized alkaline intrusive environments and anhydrous enstatite chondrites and achondrites. Am Mineral 99:1683–1693. https://doi.org/10.2138/am.2014.4700

    Article  Google Scholar 

  • Czamanske GK, Erd RC, Sokolova MN et al (1979) New data on rasvumite and djerfisherite. Am Mineral 64:776–778

    Google Scholar 

  • Czamanske GK, Erd RC, Leonard BF, Clark JR (1981) Bartonite, a new potassium iron sulfide mineral. Am Mineral 66:369–375

    Google Scholar 

  • Devyatiyarova AS (2017) Specific sulfide mineralization of spurrite marbles of the contact zone on the Kochumdek River (basin of the river Podkamennaya Tunguska) (in Russian). Metallog Ancient Mod Oceans (23):229–232

  • Dobrovolskaya MG (1982) Murunskite, K2Cu3FeS4, a new sulfide of potassium, copper, and iron. Int Geol Rev 24:1109–1114. https://doi.org/10.1080/00206818209451049

    Article  Google Scholar 

  • Dobrovolskaya M, Nekrasov IY (1992) Phase relations in systems containing alkali metals (in Russian). Dokl Earth Sci 322:373–377

    Google Scholar 

  • Ebel DS, Sack RO (2013) Djerfisherite: nebular source of refractory potassium. Contrib Mineral Petrol 166:923–934. https://doi.org/10.1007/s00410-013-0898-x

    Article  Google Scholar 

  • Eichhorn BW (1994) Ternary transition metal sulfides. Prog Inorgan Chem 42:139–240

    Google Scholar 

  • Evans H, Clark J (1981) The crystal structure of bartonite, a potassium iron sulfide, and its relationship to pentlandite and djerfisherite. Am Miner 66:376–384

    Google Scholar 

  • Fei Y, Li J, Bertka CM, Prewitt CT (2000) Structure type and bulk modulus of Fe3S, a new iron–sulfur compound. Am Mineral 85:1830–1833. https://doi.org/10.2138/am-2000-11-1229

    Article  Google Scholar 

  • Frezzotti ML, Ferrando S (2018) The role of halogens in the lithospheric mantle. In: The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Cham, pp 805–845

    Chapter  Google Scholar 

  • Fuchs LH (1966) Djerfisherite, alkali copper–iron sulfide: a new mineral from enstatite chondrites. Science 153(3732):166–167. https://doi.org/10.1126/science.153.3732.166

    Article  Google Scholar 

  • Goettel KA (1976) Models for the origin and composition of the Earth, and the hypothesis of potassium in the Earth’s core. Geophys Surv 2:369–397

    Article  Google Scholar 

  • Golovin AV, Goryainov SV, Kokh SN et al (2017) The application of Raman spectroscopy to djerfisherite identification. J Raman Spectrosc. https://doi.org/10.1002/jrs.5210

    Google Scholar 

  • Guo J, Chen X, Wang G et al (2012) Effect of doping on electrical, magnetic, and superconducting properties of K x Fe2-yS2. Phys Rev B Condens Matter Mater Phys 85:2–6. https://doi.org/10.1103/PhysRevB.85.054507

    Google Scholar 

  • Henderson CMB, Kogarko LN, Plant D (1999) Exterem closed system fractionation of volatile-rich, ultrabasic peralkaline melt inclusions and the occurrence of djerfisherite in the Kugda alkaline complex, Siberia. Mineral Mag 63:433–438

    Article  Google Scholar 

  • Howd FH, Barnes HL (1975) Ore solution chemistry; IV, replacement of marble by sulfides at 450 °C. Econ Geol 70:968–981. https://doi.org/10.2113/gsecongeo.70.5.968

    Article  Google Scholar 

  • Kissin SA, Scott SD (1982) Phase relations involving pyrrhotite below 350 °C. Econ Geol 77:1739–1754. https://doi.org/10.2113/gsecongeo.77.7.1739

    Article  Google Scholar 

  • Kullerud G, Yoder HS (1959) Pyrite stability relations in the Fe–S system. Econ Geol 54:533–572. https://doi.org/10.2113/gsecongeo.54.4.533

    Article  Google Scholar 

  • Mitchell RH (1997) Carbonate–carbonate immiscibility, neighborite and potassium iron sulphide in Oldoinyo lengai natrocarbonatite. Mineral Mag 61:779–789

    Article  Google Scholar 

  • Mrazek FC, Battles JE (1977) Electrochemical formation and chemical characterization of a djerfisherite-like compound. J Electrochem Soc 124:1556–1558. https://doi.org/10.1149/1.2133109

    Article  Google Scholar 

  • Pekov IV, Shcherbachev DK, Kononkova NN (2003) Bartonite from Lovozero Massif (Kola Peninsula) (in Russian). Zapiski VMO 3:97–101

    Google Scholar 

  • Pekov IV, Zubkova NV, Lisitsyn DV, Pushcharovsky DY (2009) Crystal chemistry of murunskite. Dokl Earth Sci 424:139–141. https://doi.org/10.1134/S1028334X09010292

    Article  Google Scholar 

  • Schwarz M, Haas M, Röhr C (2013) Die neuen alkalimetall–sulfidoferrate K9[FeIIIS4](S2)S, (K/Rb)6[FeIII 2S6], Rb8[FeIII 4S10] und K7[FeII/IIIS2]5. Z Anorg Allg Chem 639:360–374. https://doi.org/10.1002/zaac.201200397

    Article  Google Scholar 

  • Sharygin VV, Golovin AV, Pokhilenko NP, Kamenetsky VS (2007a) Djerfisherite in the Udachnaya-East pipe kimberlites (Sakha-Yakutia, Russia): paragenesis, composition and origin. Eur J Mineral 19(1):51–63

    Article  Google Scholar 

  • Sharygin VV, Kamenetsky VS, Kamenetskaya MB et al (2007b) Rasvumite from the Udachnaya-East Pipe: the first finding in kimberlites. Dokl Earth Sci 415:929–934. https://doi.org/10.1134/S1028334X07060232

    Article  Google Scholar 

  • Sharygin VV, Kamenetsky VS, Kamenetsky MB (2008) Potassium sulfides in kimberlite-hosted chloride-“nyerereite” and chloride clasts of Udachnaya-East pipe, Yakutia, Russia. Can Mineral 46:1079–1095. https://doi.org/10.3749/canmin.46.4.1079

    Article  Google Scholar 

  • Sokolova MN, Dobrovolskaya MG, Organova NI et al (1970) Of sulphide of iron and potassium, the new mineral rasvumite (in Russian). Zapiski VMO 99:712–720

    Google Scholar 

  • Somerville M, Ahrens TJ (1980) Shock compression of KFeS2 and the question of potassium in the core. J Geophys Res 85:7016–7024

    Article  Google Scholar 

  • Sorokhtina NV, Asavin AM, Senin VG (2010) K-bearing sulfides in carbonatites of the Guli massif of the Polar Siberia. In: Abstracts of XXVII International conference School «Geochemistry of Alkaline rocks». Moscow-Koktebel’, pp 183–186

  • Takechi Y, Kusachi I, Nakamuta Y, Kase K (2000) Nickel-bearing djerfisherite in gehlenite-spurrite skarn at Kushiro, Hiroshima Prefecture, Japan. Resour Geol 50:179–184. https://doi.org/10.1111/j.1751-3928.2000.tb00067.x

    Article  Google Scholar 

  • Vaughan DJ, Craig JR (1978) Mineral chemistry of metal sulfides. Cambridge University Press, Cambridge

    Google Scholar 

  • Villars P, Okamoto H (eds) (2016) K-S Binary Phase Diagram 0–100 at.% S: datasheet from “PAULING FILE Multinaries Edition-2012” in SpringerMaterials. http://materials.springer.com/isp/phase-diagram/docs/c_0901465. Accessed 7 May 2017

  • Yakovenchuk VN, Pakhomovsky YA, Men’shikov YP et al (2003) Chlorbartonite, K6Fe24S26(Cl,S), a new mineral species from a hydrothermal vein in the Khibina Massif, Kola Peninsula, Russia: description and crystal structure. Can Mineral 41:503–511. https://doi.org/10.2113/gscanmin.41.2.503

    Article  Google Scholar 

  • Zaccarini F, Thalhammer OAR, Princivalle F et al (2007) Djerfisherite in the Guli dunite complex, Polar Siberia: a primary or metasomatic phase? Can Mineral 45:1201–1211. https://doi.org/10.2113/gscanmin.45.5.1201

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank T.N. Dokina for performing the X-ray studies. The authors are also grateful to the anonymous reviewers and Dr. Mark S. Ghiorso for detailed and insightful comments and suggestions. The reported study was funded by the RFBR according to the research project no. 16-35-00479.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin O. Osadchii.

Additional information

Communicated by Mark S. Ghiorso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osadchii, V.O., Voronin, M.V. & Baranov, A.V. Phase equilibria in the KFeS2–Fe–S system at 300–600 °C and bartonite stability. Contrib Mineral Petrol 173, 44 (2018). https://doi.org/10.1007/s00410-018-1464-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-018-1464-3

Keywords

Navigation