Skip to main content

Advertisement

Log in

Decoding a protracted zircon geochronological record in ultrahigh temperature granulite, and persistence of partial melting in the crust, Rogaland, Norway

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

This contribution evaluates the relation between protracted zircon geochronological signal and protracted crustal melting in the course of polyphase high to ultrahigh temperature (UHT; T > 900 °C) granulite facies metamorphism. New U–Pb, oxygen isotope, trace element, ion imaging and cathodoluminescence (CL) imaging data in zircon are reported from five samples from Rogaland, South Norway. The data reveal that the spread of apparent age captured by zircon, between 1040 and 930 Ma, results both from open-system growth and closed-system post-crystallization disturbance. Post-crystallization disturbance is evidenced by inverse age zoning induced by solid-state recrystallization of metamict cores that received an alpha dose above 35 × 1017 α  g−1. Zircon neocrystallization is documented by CL-dark domains displaying O isotope open-system behaviour. In UHT samples, O isotopic ratios are homogenous (δ18O = 8.91 ± 0.08‰), pointing to high-temperature diffusion. Scanning ion imaging of these CL-dark domains did not reveal unsupported radiogenic Pb. The continuous geochronological signal retrieved from the CL-dark zircon in UHT samples is similar to that of monazite for the two recognized metamorphic phases (M1: 1040–990 Ma; M2: 940–930 Ma). A specific zircon-forming event is identified in the orthopyroxene and UHT zone with a probability peak at ca. 975 Ma, lasting until ca. 955 Ma. Coupling U–Pb geochronology and Ti-in-zircon thermometry provides firm evidence of protracted melting lasting up to 110 My (1040–930 Ma) in the UHT zone, 85 My (ca. 1040–955 Ma) in the orthopyroxene zone and some 40 My (ca. 1040–1000 Ma) in the regional basement. These results demonstrate the persistence of melt over long timescales in the crust, punctuated by two UHT incursions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andersen T, Andresen A, Sylvester AH (2001) Nature and distribution of deep crustal reservoirs in the southwestern part of the Baltic shield: evidence from Nd, Sr and Pb isotope data on late Sveconorwegian granites. J Geol Soc 158:235–267

    Article  Google Scholar 

  • Bingen B, Van Breemen O (1998) U-Pb monazite ages in amphibolite- to granulite-facies orthogneiss reflect hydrous mineral breakdown reactions: Sveconorwegian Province of SW Norway. Contrib Mineral Petrol 132:336–353

    Article  Google Scholar 

  • Bingen B, Demaiffe D, Hertogen J (1990) Evolution of feldspars at the amphibolite-granulite-facies transition in augen gneisses (SW Norway): geochemistry and Sr isotopes. Contrib Mineral Petrol 105:275–288

    Article  Google Scholar 

  • Bingen B, Austrheim H, Whitehouse MJ (2001) Ilmenite as a source for zirconium during high-grade metamorphism? textural evidence from the Caledonides of western Norway and implications for zircon geochronology. J Petrol 42:355–375

    Article  Google Scholar 

  • Bingen B, Sk\aar Ø, Marker M, Sigmond EM, Nordgulen Ø, Ragnhildstveit J, Mansfeld J, Tucker RD, Liégeois J-P (2005) Timing of continental building in the Sveconorwegian orogen, SW Scandinavia. Nor J Geol 85:87–116

    Google Scholar 

  • Bingen B, Davis WJ, Hamilton MA, Engvik AK, Stein HJ, Skar O, Nordgulen O (2008a) Geochronology of high-grade metamorphism in the Sveconorwegian belt, S. Norway: U–Pb, Th–Pb and Re–Os data. Nor Geol Tidsskr 88:13

    Google Scholar 

  • Bingen B, Nordgulen O, Viola G (2008b) A four-phase model for the Sveconorwegian orogeny, SW Scandinavia. Nor Geol Tidsskr 88:43

    Google Scholar 

  • Blereau E, Johnson TE, Clark C, Taylor RJM, Kinny PD, Hand M (2017) Reappraising the P–T evolution of the Rogaland–Vest Agder Sector, southwestern Norway. Geosci Front 8:1–14. https://doi.org/10.1016/j.gsf.2016.07.003

    Article  Google Scholar 

  • Bol LC, Nijland TG, Sauter P, Jansen JBH, Valley JW (1995) Preservation of pre-metamorphic oxygen and carbon isotopic trends in granulite facies marbles from Rogaland, Southwest Norway. Am J Sci 295:1179–1219

    Article  Google Scholar 

  • Bolle O, Diot H, Auwera JV, Dembele A, Schittekat J, Spassov S, Ovtcharova M, Schaltegger U (2018) Pluton construction and deformation in the Sveconorwegian crust of SW Norway: magnetic fabric and U–Pb geochronology of the Kleivan and Sjelset granitic complexes. Precambrian Res 305:247–267. https://doi.org/10.1016/j.precamres.2017.12.012

    Article  Google Scholar 

  • Boynton W (1984) Cosmochemistry of the rare earth elements: meteorite studies, in: rare earth element geochemistry. Henderson P, Amsterdam, pp 63–114

    Book  Google Scholar 

  • Capitani GC, Leroux H, Doukhan JC, Ríos S, Zhang M, Salje EKH (2000) A TEM investigation of natural metamict zircons: structure and recovery of amorphous domains. Phys Chem Miner 27:545–556

    Article  Google Scholar 

  • Chardon D, Gapais D, Cagnard F (2009) Flow of ultra-hot orogens: a view from the Precambrian, clues for the Phanerozoic. Tectonophysics 477:105–118. https://doi.org/10.1016/j.tecto.2009.03.008

    Article  Google Scholar 

  • Chen R-X, Ding B, Zheng Y-F, Hu Z (2015) Multiple episodes of anatexis in a collisional orogen: zircon evidence from migmatite in the Dabie orogen. Lithos 212–215:247–265. https://doi.org/10.1016/j.lithos.2014.11.004

    Article  Google Scholar 

  • Cherniak DJ (2010) Diffusion in accessory minerals: zircon, titanite, apatite, monazite and xenotime. Rev Mineral Geochem 72:827–869. https://doi.org/10.2138/rmg.2010.72.18

    Article  Google Scholar 

  • Cherniak DJ, Watson EB (2003) Pb diffusion in zircon. Rev Mineral Geochem 53:113–143

    Article  Google Scholar 

  • Claesson S, Bibikova EV, Shumlyanskyy L, Whitehouse MJ, Billström K (2016) Can oxygen isotopes in magmatic zircon be modified by metamorphism? A case study from the Eoarchean Dniester-Bug Series, Ukrainian Shield. Precambrian Res 273:1–11. https://doi.org/10.1016/j.precamres.2015.11.002

    Article  Google Scholar 

  • Clark C, Fitzsimons ICW, Healy D, Harley SL (2011) How does the continental crust get really hot? Elements 7:235–240. https://doi.org/10.2113/gselements.7.4.235

    Article  Google Scholar 

  • Coint N, Slagstad T, Roberts NMW, Marker M, Røhr T, Sørensen BE (2015) The Late Mesoproterozoic Sirdal Magmatic Belt, SW Norway: relationships between magmatism and metamorphism and implications for Sveconorwegian orogenesis. Precambrian Res 265:57–77. https://doi.org/10.1016/j.precamres.2015.05.002

    Article  Google Scholar 

  • Corfu F (2013) A century of U–Pb geochronology: the long quest towards concordance. Geol Soc Am Bull 125:33–47

    Article  Google Scholar 

  • Corfu F, Hanchar JM, Hoskin PW, Kinny P (2003) Atlas of zircon textures. Rev Mineral Geochem 53:469–500

    Article  Google Scholar 

  • Degeling H, Eggins S, Ellis DJ (2001) Zr budgets for metamorphic reactions, and the formation of zircon from garnet breakdown. Mineral Mag 65:749–758. https://doi.org/10.1180/0026461016560006

    Article  Google Scholar 

  • Demaiffe D, Javoy M (1980) 18O/16O ratios of anorthosites and related rocks from the Rogaland Complex (SW Norway). Contrib Mineral Petrol 72:311–317

    Article  Google Scholar 

  • Drüppel K, Elsasser L, Brandt S, Gerdes A (2013) Sveconorwegian mid-crustal ultrahigh-temperature metamorphism in Rogaland, Norway: U–Pb LA–ICP–MS geochronology and pseudosections of sapphirine granulites and associated paragneisses. J Petrol 54:305–350. https://doi.org/10.1093/petrology/egs070

    Article  Google Scholar 

  • Ewing RC, Meldrum A, Wang L, Wang S (2000) Radiation-induced amorphization. Rev Mineral Geochem 39:319–361. https://doi.org/10.2138/rmg.2000.39.12

    Article  Google Scholar 

  • Ewing RC, Meldrum A, Wang L, Weber WJ, Corrales LR (2003) Radiation effects in zircon. Rev Mineral Geochem 53:387–425

    Article  Google Scholar 

  • Ewing TA, Hermann J, Rubatto D (2013) The robustness of the Zr-in-rutile and Ti-in-zircon thermometers during high-temperature metamorphism (Ivrea-Verbano Zone, northern Italy. Contrib Mineral Petrol 165:757–779. https://doi.org/10.1007/s00410-012-0834-5

    Article  Google Scholar 

  • Falkum T (1982) Geologisk kart over Norge, berggrunnskart Mandal, 1:250000, Norges Geologiske Undersøkelse. Geological maps of Norway

  • Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154:429–437. https://doi.org/10.1007/s00410-007-0201-0

    Article  Google Scholar 

  • Flowers RM, Schmitt AK, Grove M (2010) Decoupling of U–Pb dates from chemical and crystallographic domains in granulite facies zircon. Chem Geol 270:20–30. https://doi.org/10.1016/j.chemgeo.2009.11.002

    Article  Google Scholar 

  • Fornelli A, Langone A, Micheletti F, Piccarreta G (2011) Time and duration of Variscan high-temperature metamorphic processes in the south European Variscides: constraints from U–Pb chronology and trace element chemistry of zircon. Mineral Petrol 103:101–122. https://doi.org/10.1007/s00710-011-0156-8

    Article  Google Scholar 

  • Fraser G, Ellis D, Eggins S (1997) Zirconium abundance in granulite-facies minerals, with implications for zircon geochronology in high-grade rocks. Geology 25:607–610

    Article  Google Scholar 

  • Gardés E, Jaoul O, Montel J-M, Seydoux-Guillaume A-M, Wirth R (2006) Pb diffusion in monazite: an experimental study of interdiffusion. Geochim Cosmochim Acta 70:2325–2336. https://doi.org/10.1016/j.gca.2006.01.018

    Article  Google Scholar 

  • Gauthiez-Putallaz L, Rubatto D, Hermann J (2016) Dating prograde fluid pulses during subduction by in situ U–Pb and oxygen isotope analysis. Contrib Mineral Petrol. https://doi.org/10.1007/s00410-015-1226-4

    Google Scholar 

  • Geisler T (2002) Isothermal annealing of partially metamict zircon: evidence for a three-stage recovery process. Phys Chem Miner 29:420–429. https://doi.org/10.1007/s00269-002-0249-3

    Article  Google Scholar 

  • Geisler T, Schaltegger U, Tomaschek F (2007) Re-equilibration of zircon in acueous fluids and melts. Elements 3:43–50

    Article  Google Scholar 

  • Götze J, Kempe U, Habermann D, Nasdala L, Neuser RD, Richter DK (1999) High-resolution cathodoluminescence combined with SHRIMP ion probe measurements of detrital zircons. Mineral Mag 63:179–187

    Article  Google Scholar 

  • Harley SL (2016) A matter of time: the importance of the duration of UHT metamorphism. J Mineral Petrol Sci 111:50–72

    Article  Google Scholar 

  • Harley SL, Nandakumar V (2014) Accessory mineral behaviour in granulite migmatites: a case study from the Kerala Khondalite Belt, India. J Petrol 55:1965–2002. https://doi.org/10.1093/petrology/egu047

    Article  Google Scholar 

  • Harley SL, Kelly NM, Möller A (2007) Zircon behaviour and the thermal histories of mountain chains. Elements 3:25–30

    Article  Google Scholar 

  • Hermann J, Rubatto D (2003) Relating zircon and monazite domains to garnet growth zones: age and duration of granulite facies metamorphism in the Val Malenco lower crust. J Metamorph Geol 21:833–852. https://doi.org/10.1046/j.1525-1314.2003.00484.x

    Article  Google Scholar 

  • Hermans G, Tobi AC, Poorter RP, Maijer C (1975) The high-grade metamorphic Precambrian of the Sirdal-Ørsdal area, Rogaland/Vest-Agder, south-west Norway. Nor Geol Undersokelse 318:351–374

    Google Scholar 

  • Hermans G, Hakstege A, Jansen JBH, Poorter RP (1976) Sapphirine occurrence near Vikesa in Rogaland, SW Norway. Nor Geol Tidsskr 56:397–412

    Google Scholar 

  • Horton F, Hacker B, Kylander-Clark A, Holder R, Jöns N (2016) Focused radiogenic heating of middle crust caused ultrahigh temperatures in southern Madagascar. Tectonics 35:293–314. https://doi.org/10.1002/2015TC004040

    Article  Google Scholar 

  • Hoskin PWO, Black LP (2000) Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J Metamorph Geol 18:423–439

    Article  Google Scholar 

  • Hoskin PW, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53:27–62

    Article  Google Scholar 

  • Jansen JBH, Blok RJ, Bos A, Scheelings M, 1985. Geothermometry and geobarometry in Rogaland and preliminary results from the Bamble area, S Norway, in: the deep proterozoic crust in the North Atlantic Provinces. Springer, Berlin, pp 499–516

    Google Scholar 

  • Jeon H, Whitehouse MJ (2015) A critical evaluation of U–Pb calibration schemes used in SIMS zircon geochronology. Geostand Geoanalyt Res 39:443–452. https://doi.org/10.1111/j.1751-908X.2014.00325.x

    Article  Google Scholar 

  • Kelly NM, Harley SL (2005) An integrated microtextural and chemical approach to zircon geochronology: refining the Archaean history of the Napier Complex, east Antarctica. Contrib Mineral Petrol 149:57–84. https://doi.org/10.1007/s00410-004-0635-6

    Article  Google Scholar 

  • Kelsey D, Clark C, Hand M (2008) Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: examples using model metapelitic and metapsammitic granulites. J Metamorph Geol 26:199–212. https://doi.org/10.1111/j.1525-1314.2007.00757.x

    Article  Google Scholar 

  • Kooijman E, Upadhyay D, Mezger K, Raith MM, Berndt J, Srikantappa C (2011) Response of the U–Pb chronometer and trace elements in zircon to ultrahigh-temperature metamorphism: the Kadavur anorthosite complex, southern India. Chem Geol 290:177–188. https://doi.org/10.1016/j.chemgeo.2011.09.013

    Article  Google Scholar 

  • Korhonen FJ, Clark C, Brown M, Bhattacharya S, Taylor R (2013) How long-lived is ultrahigh temperature (UHT) metamorphism? Constraints from zircon and monazite geochronology in the Eastern Ghats orogenic belt, India. Precambrian Res 234:322–350. https://doi.org/10.1016/j.precamres.2012.12.001

    Article  Google Scholar 

  • Kusiak MA, Whitehouse MJ, Wilde SA, Nemchin AA, Clark C (2013) Mobilization of radiogenic Pb in zircon revealed by ion imaging: implications for early Earth geochronology. Geology 41:291–294

    Article  Google Scholar 

  • Kusiak MA, Dunkley DJ, Wirth R, Whitehouse MJ, Wilde SA, Marquardt K (2015) Metallic lead nanospheres discovered in ancient zircons. Proc Natl Acad Sci 112:4958–4963. https://doi.org/10.1073/pnas.1415264112

    Article  Google Scholar 

  • Laurent AT (2016) Petrochronology of monazite and zircon in ultra-high temperature granulite from Rogaland, Norway. Doctoral Dissertation, Université de Toulouse. Retrieved from https://www.theses.fr/2016TOU30290

  • Laurent AT, Seydoux-Guillaume A-M, Duchene S, Bingen B, Bosse V, Datas L, 2016. Sulphate incorporation in monazite lattice and dating the cycle of sulphur in metamorphic belts. Contrib Mineral Petrol 171. https://doi.org/10.1007/s00410-016-1301-5

  • Maijer CP (1987) The metamorphic envelope of the Rogaland intrusive complex. In: Maijer C, Padget P (eds) The geology of southermost Norway: an excursion guide, 1st edn. Norges Geologiske Undersokelse special publication, Trondheim, pp 68–72

  • Maijer C, Andriessen PAM, Hebeda EH, Jansen JBH, Verschure RH (1981) Osumilite, an approximately 970 Ma old high-temperature index mineral of the granulite-facies metamorphism in Rogaland, SW Norway. Geol Environ Mijnb 60:267–272

    Google Scholar 

  • Marsh JH, Stockli DF (2015) Zircon U–Pb and trace element zoning characteristics in an anatectic granulite domain: insights from LASS–ICP–MS depth profiling. Lithos 239:170–185. https://doi.org/10.1016/j.lithos.2015.10.017

    Article  Google Scholar 

  • Martin LAJ, Duchene S, Deloule E, Vanderhaeghe O (2006) The isotopic composition of zircon and garnet: a record of the metamorphic history of Naxos. Greece Lithos 87:174–192

    Article  Google Scholar 

  • Martin LAJ, Duchêne S, Deloule E, Vanderhaeghe O (2008) Mobility of trace elements and oxygen in zircon during metamorphism: consequences for geochemical tracing. Earth Planet Sci Lett 267:161–174. https://doi.org/10.1016/j.epsl.2007.11.029

    Article  Google Scholar 

  • McLaren AC, Fitz Gerald JD, Williams IS (1994) The microsctructure of zircon and its influence on the age determination from Pb/U isotopic ratios measured by ion microprobe. Geochim Cosmochim Acta 58:993–1005

    Article  Google Scholar 

  • Mezger K, Krogstad EJ (1997) Interpretation of discordant U–Pb zircon ages: an evaluation. J Metamorph Geol 15:127–140

    Article  Google Scholar 

  • Möller A, O’brien PJ, Kennedy A, Kröner A (2002) Polyphase zircon in ultrahigh-temperature granulites (Rogaland, SW Norway): constraints for Pb diffusion in zircon. J Metamorph Geol 20:727–740

    Article  Google Scholar 

  • Möller A, O’Brien PJ, Kennedy A, Kröner A (2003) Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahigh-temperature granulites of Rogaland (SW Norway). Geol Soc Lond Spec Publ 220:65–81

    Article  Google Scholar 

  • Möller C, Bingen B, Andersson J, Stephens MB, Viola G, Scherstén A (2013) A non-collisional, accretionary Sveconorwegian orogen—comment. Terra Nova 25:165–168. https://doi.org/10.1111/ter.12029

    Article  Google Scholar 

  • Murakami T, Chakoumakos B, Ewing RC, Lumpkin G, Weber WJ (1991) Alpha-decay event damage in zircon. Am Mineral 76:1510–1532

    Google Scholar 

  • Nasdala L, Wenzel M, Vavra G, Irmer G, Wenzel T, Kober B (2001) Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage. Contrib Mineral Petrol 141:125–144. https://doi.org/10.1007/s004100000235

    Article  Google Scholar 

  • Nasdala L, Lengauer CL, Hanchar JM, Kronz A, Wirth R, Blanc P, Kennedy AK, Seydoux-Guillaume A-M (2002) Annealing radiation damage and the recovery of cathodoluminescence. Chem Geol 191:121–140

    Article  Google Scholar 

  • Piazolo S, La Fontaine A, Trimby P, Harley S, Yang L, Armstrong R, Cairney JM (2016) Deformation-induced trace element redistribution in zircon revealed using atom probe tomography. Nat Commun 7:10490. https://doi.org/10.1038/ncomms10490

    Article  Google Scholar 

  • Pidgeon RT (2014) Zircon radiation damage ages. Chem Geol 367:13–22. https://doi.org/10.1016/j.chemgeo.2013.12.010

    Article  Google Scholar 

  • Regis D, Warren CJ, Mottram CM, Roberts NMW (2016) Using monazite and zircon petrochronology to constrain the P–T–t evolution of the middle crust in the Bhutan Himalaya. J Metamorph Geol 34:617–639. https://doi.org/10.1111/jmg.12196

    Article  Google Scholar 

  • Roberts NMW, Slagstad T (2015) Continental growth and reworking on the edge of the Columbia and Rodinia supercontinents; 1.86–0.9 Ga accretionary orogeny in southwest Fennoscandia. Int Geol Rev 57:1582–1606. https://doi.org/10.1080/00206814.2014.958579

    Article  Google Scholar 

  • Roberts NMW, Slagstad T, Parrish RR, Norry MJ, Marker M, Horstwood MSA (2013) Sedimentary recycling in arc magmas: geochemical and U–Pb–Hf–O constraints on the Mesoproterozoic Suldal Arc, SW Norway. Contrib Mineral Petrol 165:507–523. https://doi.org/10.1007/s00410-012-0820-y

    Article  Google Scholar 

  • Rubatto D, Williams IS, Buick IS (2001) Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contrib Mineral Petrol 140:458–468

    Article  Google Scholar 

  • Rubatto D, Chakraborty S, Dasgupta S (2013) Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology. Contrib Mineral Petrol 165:349–372. https://doi.org/10.1007/s00410-012-0812-y

    Article  Google Scholar 

  • Salje EKH, Chrosch J, Ewing RC (1999) Is “metamictization” of zircon a phase transition? Am Mineral 84:1107–1116

    Article  Google Scholar 

  • Schärer U, Wilmart E, Duchesne J-C (1996) The short duration and anorogenic character of anorthosite magmatism: U–Pb dating of the Rogaland complex, Norway. Earth Planet Sci Lett 139:335–350

    Article  Google Scholar 

  • Seydoux-Guillaume A-M, Bingen B, Paquette J-L, Bosse V (2015) Nanoscale evidence for uranium mobility in zircon and the discordance of U–Pb chronometers. Earth Planet Sci Lett 409:43–48. https://doi.org/10.1016/j.epsl.2014.10.044

    Article  Google Scholar 

  • Skora S, Baumgartner LP, Mahlen NJ, Johnson CM, Pilet S, Hellebrand E (2006) Diffusion-limited REE uptake by eclogite garnets and its consequences for Lu–Hf and Sm–Nd geochronology. Contrib Mineral Petrol 152:703–720. https://doi.org/10.1007/s00410-006-0128-x

    Article  Google Scholar 

  • Slagstad T, Roberts NMW, Marker M, Røhr TS, Schiellerup H (2013) A non-collisional, accretionary Sveconorwegian orogen: a non-collisional, accretionary Sveconorwegian orogen. Terra Nova 25:30–37. https://doi.org/10.1111/ter.12001

    Article  Google Scholar 

  • Slagstad T, Roberts NMW, Kulakov E (2017) Linking orogenesis across a supercontinent; the Grenvillian and Sveconorwegian margins on Rodinia. Gondwana Res 44:109–115. https://doi.org/10.1016/j.gr.2016.12.007

    Article  Google Scholar 

  • Spencer CJ, Roberts NMW, Cawood PA, Hawkesworth CJ, Prave AR, Antonini ASM, Horstwood MSA (2014) Intermontane basins and bimodal volcanism at the onset of the Sveconorwegian Orogeny, southern Norway. Precambrian Res 252:107–118. https://doi.org/10.1016/j.precamres.2014.07.008

    Article  Google Scholar 

  • Spencer CJ, Kirkland CL, Taylor RJM (2016) Strategies towards statistically robust interpretations of in situ U–Pb zircon geochronology. Geosci Front 7:581–589. https://doi.org/10.1016/j.gsf.2015.11.006

    Article  Google Scholar 

  • Štípská P, Powell R, Hacker BR, Holder R, Kylander-Clark ARC (2016) Uncoupled U/Pb and REE response in zircon during the transformation of eclogite to mafic and intermediate granulite (Blanský les, Bohemian Massif). J Metamorph Geol 34:551–572. https://doi.org/10.1111/jmg.12193

    Article  Google Scholar 

  • Taylor RJM, Clark C, Fitzsimons ICW, Santosh M, Hand M, Evans N, McDonald B, 2014. Post-peak, fluid-mediated modification of granulite facies zircon and monazite in the Trivandrum Block, southern India. Contrib Mineral Petrol. https://doi.org/10.1007/s00410-014-1044-0

    Google Scholar 

  • Taylor RJM, Harley SL, Hinton RW, Elphick S, Clark C, Kelly NM (2015) Experimental determination of REE partition coefficients between zircon, garnet and melt: a key to understanding high-T crustal processes. J Metamorph Geol 33:231–248. https://doi.org/10.1111/jmg.12118

    Article  Google Scholar 

  • Tichomirowa M, Whitehouse MJ, Nasdala L (2005) Resorption, growth, solid state recrystallisation, and annealing of granulite facies zircon—a case study from the Central Erzgebirge, Bohemian Massif. Lithos 82:25–50. https://doi.org/10.1016/j.lithos.2004.12.005

    Article  Google Scholar 

  • Tobi AC, Hermans G, Maijer C, Jansen JBH (1985) Metamorphic zoning in the high-grade proterozoic of Rogaland-Vest Agder SW Norway, The Deep Proterozoic Crust in the North Atlantic Provinces. A.C. Tobi & J.L.R. Touret, pp 477–497

  • Tomkins HS, Williams IS, Ellis DJ (2005) In situ U–Pb dating of zircon formed from retrograde garnet breakdown during decompression in Rogaland, SW Norway. J Metamorph Geol 23:201–215. https://doi.org/10.1111/j.1525-1314.2005.00572.x

    Article  Google Scholar 

  • Valley J, Bindemann IN, Peck WH (2003) Empirical calibration of oxygen isotope fractionation in zircon. Geochim Cosmochim Acta 67:3257–3266

    Article  Google Scholar 

  • Vander Auwera J, Bolle O, Bingen B, Liégeois J-P, Bogaerts M, Duchesne JC, De Waele B, Longhi J (2011) Sveconorwegian massif-type anorthosites and related granitoids result from post-collisional melting of a continental arc root. Earth Sci Rev 107:375–397. https://doi.org/10.1016/j.earscirev.2011.04.005

    Article  Google Scholar 

  • Vanderhaeghe O (2009) Migmatites, granites and orogeny: flow modes of partially-molten rocks and magmas associated with melt/solid segregation in orogenic belts. Tectonophysics 477:119–134. https://doi.org/10.1016/j.tecto.2009.06.021

    Article  Google Scholar 

  • Vanderhaeghe O, Teyssier C (2001) Partial melting and flow of orogens. Tectonophysics 342:451–472

    Article  Google Scholar 

  • Vavra G, Schmid R, Gebauer D (1999) Internal morphology, habit and U–Th–Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps). Contrib Mineral Petrol 134:380–404

    Article  Google Scholar 

  • Watson EB, Cherniak DJ (1997) Oxygen diffusion in zircon. Earth Planet Sci Lett 148:527–544

    Article  Google Scholar 

  • Westphal M, Schumacher JC, Boschert S (2003) High-temperature metamorphism and the role of magmatic heat sources at the Rogaland anorthosite complex in southwestern Norway. J Petrol 44:1145–1162

    Article  Google Scholar 

  • Whitehouse MJ, Kamber BS (2005) Assigning dates to thin gneissic veins in high-grade metamorphic terranes: a cautionary tale from Akilia, Southwest Greenland. J Petrol 46:291–318. https://doi.org/10.1093/petrology/egh075

    Article  Google Scholar 

  • Whitehouse, M.J., Kemp, A.I.S., 2010. On the difficulty of assigning crustal residence, magmatic protolith and metamorphic ages to Lewisian granulites: constraints from combined in situ U–Pb and Lu–Hf isotopes. Geol Soc Lond Spec Publ 335:81. https://doi.org/10.1144/SP335.5

    Article  Google Scholar 

  • Whitehouse MJ, Nemchin AA (2009) High precision, high accuracy measurement of oxygen isotopes in a large lunar zircon by SIMS. Chem Geol 261:32–42. https://doi.org/10.1016/j.chemgeo.2008.09.009

    Article  Google Scholar 

  • Whitehouse MJ, Platt JP (2003) Dating high-grade metamorphism—constraints from rare-earth elements in zircon and garnet. Contrib Mineral Petrol 145:61–74. https://doi.org/10.1007/s00410-002-0432-z

    Article  Google Scholar 

  • Whitehouse MJ, Ravindra Kumar GR, Rimša A, 2014. Behaviour of radiogenic Pb in zircon during ultrahigh-temperature metamorphism: an ion imaging and ion tomography case study from the Kerala Khondalite Belt, southern India. Contrib Mineral Petrol 168. https://doi.org/10.1007/s00410-014-1042-2

  • Whitehouse MJ, Kusiak MA, Wirth R, Kumar R, G.R (2017) Metallic Pb nanospheres in ultra-high temperature metamorphosed zircon from southern India. Mineral Petrol 111:467–474. https://doi.org/10.1007/s00710-017-0523-1

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187. https://doi.org/10.2138/am.2010.3371

    Article  Google Scholar 

  • Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, Quadt A von, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newsl 19:1–23

    Article  Google Scholar 

  • Wilmart E, Pineau F, Réjou-Michel A, Duchesne JC (1994) Fluid transfer in anorthosites and related rocks from Rogaland (Southwest Norway): evidence from stable isotopes. Earth Planet Sci Lett 125:55–70

    Article  Google Scholar 

  • Zhang M, Salje EK, Capitani GC, Leroux H, Clark AM, Schlüter J, Ewing RC (2000) Annealing of alpha-decay damage in zircon: a Raman spectroscopic study. J Phys Condens Matter 12:3131

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the CNRS NEEDS program and a PHC Aurora Grant (Ministry of Foreign Affairs, Norway and France). This is NORDSIMS publication no. 542. Editorial handling by S. Reddy is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonin T. Laurent.

Additional information

Communicated by Steven Reddy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM S1 LA–ICP–MS trace elements analysis (in ppm) and Ti-in-zircon thermometry of selected zircon grains (XLS 72 KB)

ESM S2 SIMS U–Th–Pb isotopic ratios corrected for Pbc and associated dates (XLS 108 KB)

410_2018_1455_MOESM3_ESM.xlsx

ESM S3 Oxygen isotopic data in zircon and alpha dose in zircon since crystallization given by their apparent 206Pb/238U age (see text for details). (XLSX 39 KB)

410_2018_1455_MOESM4_ESM.pdf

ESM S4 Zircon U–Pb age record comparedt o Ti-in-zircon minimum temperature for the garnet-rich leucosome ALR 13-05 (a-b) and a compilation of all UHT zone samples. a– Weighted probability diagram CL-dark zircon rim for ALR 13-05 b– Frequency histogram of Ti-in-zircon thermometry for ALR 13-05. c– Distribution of calculated Ti-in-zircon temperatures through time in the UHT zone. (PDF 116 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laurent, A.T., Bingen, B., Duchene, S. et al. Decoding a protracted zircon geochronological record in ultrahigh temperature granulite, and persistence of partial melting in the crust, Rogaland, Norway. Contrib Mineral Petrol 173, 29 (2018). https://doi.org/10.1007/s00410-018-1455-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-018-1455-4

Keywords

Navigation