Experimental calibration of vanadium partitioning and stable isotope fractionation between hydrous granitic melt and magnetite at 800 °C and 0.5 GPa

  • Paolo A. Sossi
  • Julie Prytulak
  • Hugh St. C. O’Neill
Original Paper


Vanadium has multiple oxidation states in silicate melts and minerals, a property that also promotes fractionation of its isotopes. As a result, vanadium isotopes vary during magmatic differentiation, and can be powerful indicators of redox processes at high temperatures if their partitioning behaviour can be determined. To quantify the partitioning and isotope fractionation factor of V between magnetite and melt, piston cylinder experiments were performed in which magnetite and a hydrous, haplogranitic melt were equilibrated at 800 °C and 0.5 GPa over a range of oxygen fugacities (\({f_{{{\text{O}}_{\text{2}}}}}\)), bracketing those of terrestrial magmas. Magnetite is isotopically light with respect to the coexisting melt, a tendency ascribed to the VI-fold V3+ and V4+ in magnetite, and a mixture of IV- and VI-fold V5+ and V4+ in the melt. The magnitude of the fractionation factor systematically increases with increasing log\({f_{{{\text{O}}_{\text{2}}}}}\) relative to the Fayalite–Magnetite–Quartz buffer (FMQ), from ∆51Vmag-gl = − 0.63 ± 0.09‰ at FMQ − 1 to − 0.92 ± 0.11‰ (SD) at ≈ FMQ + 5, reflecting constant V3+/V4+ in magnetite but increasing V5+/V4+ in the melt with increasing log\({f_{{{\text{O}}_{\text{2}}}}}\). These first mineral-melt measurements of V isotope fractionation factors underline the importance of both oxidation state and co-ordination environment in controlling isotopic fractionation. The fractionation factors determined experimentally are in excellent agreement with those needed to explain natural isotope variations in magmatic suites. Furthermore, these experiments provide a useful framework in which to interpret vanadium isotope variations in natural rocks and magnetites, and may be used as a potential fingerprint the redox state of the magma from which they crystallise.


Redox Magnetite Magma Vanadium Stable isotope fractionation Equilibrium 



PAS was funded by an Australian Postgraduate Award and an ANU Vice-Chancellor’s Scholarship. Analytical costs and JPs visit to ANU were funded by Australian Research Council Discovery Grant DP130101355 to H. St. C. O’Neill and J. Prytulak. Many thanks to Jeremy Wykes, Dave Clark and Dean Scott for discussions regarding the piston cylinder experiments, Graham Mortimer for facilitating the set-up of V isotopes at the RSES clean lab, and Les Kinsley for assistance and feedback on running V isotopes on the Neptune Plus. We greatly appreciate two thoughtful and comprehensive reviews by Alan Woodland and Dante Canil that helped improve many aspects of this study, and acknowledge perceptive comments from Adrian Fiege on an earlier version of this work. We are grateful to Othmar Müntener for his exemplary editorial handling.

Supplementary material

410_2018_1451_MOESM1_ESM.pdf (647 kb)
Supplementary material 1 (PDF 647 KB)


  1. Anbar AD, Roe JE, Barling J, Nealson KH (2000) Nonbiological fractionation of iron isotopes. Science 288:126–128CrossRefGoogle Scholar
  2. Arató R, Audétat A (2017) Experimental calibration of a new oxybarometer for silicic magmas based on vanadium partitioning between magnetite and silicate melt. Geochim Cosmochim Acta 209:284–295CrossRefGoogle Scholar
  3. Ardia P, Giordano D, Schmidt MW (2008) A model for the viscosity of rhyolite as a function of H2O-content and pressure: a calibration based on centrifuge piston cylinder experiments. Geochim Cosmochim Acta 72:6103–6123CrossRefGoogle Scholar
  4. Balan E, De Villiers JPR, Eeckhout SG, Glatzel P, Toplis MJ, Fritsch E, Allard T, Galoisy L, Calas G (2006) The oxidation state of vanadium in titanomagnetite from layered basic intrusions. Am Mineral 91:953–956CrossRefGoogle Scholar
  5. Baldridge WS, McGetchin TR, Frey FA, Jarosewich E (1973) Magmatic evolution of Hekla, Iceland. Contrib Mineral Petrol 42(3):245–258CrossRefGoogle Scholar
  6. Bédard JH (2010) Parameterization of the Fe–Mg exchange coefficient (K D) between clinopyroxene and silicate melts. Chem Geol 274(3–4):169–176CrossRefGoogle Scholar
  7. Behrens H, Jantos N (2001) The effect of anhydrous composition on water solubility in granitic melts. Am Mineral 86(1–2):14–20CrossRefGoogle Scholar
  8. Berry AJ, Stewart GA, O’Neill HSC, Mallmann G, Mosselmans JFW (2018) A re-assessment of the oxidation state of iron in MORB glasses. Earth Planet Sci Lett 483:114–123CrossRefGoogle Scholar
  9. Bigeleisen J, Mayer MG (1947) Calculation of equilibrium constants for isotopic exchange reactions. J Chem Phys 15(5):261–267CrossRefGoogle Scholar
  10. Boettcher AL, Mysen BO, Allen JC (1973) Techniques for the control of water fugacity and oxygen fugacity for experimentation in solid-media high-pressure apparatus. J Geophys Res 78:5898–5901CrossRefGoogle Scholar
  11. Borisov A, Behrens H, Holtz F (2017) Effects of strong network modifiers on Fe3+/Fe2+ in silicate melts: an experimental study. Contrib Mineral Petrol 172(5):34CrossRefGoogle Scholar
  12. Bosi F, Halenius U, Skogby H (2009) Crystal chemistry of the magnetite-ulvospinel series. Am Mineral 94:181–189CrossRefGoogle Scholar
  13. Boutroy E, Dare SAS, Beaudoin G, Barnes S-J, Lightfoot PC (2014) Magnetite composition in Ni–Cu–PGE deposits worldwide: application to mineral exploration. J Geochem Exp 145:64–81CrossRefGoogle Scholar
  14. Bowen NL, Schairer JF, Willems HMV (1930) The ternary system Na2SiO3–Fe2O3–SiO2. Am J Sci 20:405–455CrossRefGoogle Scholar
  15. Brounce MN, Kelley KA, Cottrell E (2014) Variations in Fe3+/∑Fe of mariana arc basalts and mantle wedge \({f_{{{\text{O}}_{\text{2}}}}}\). J Petrol 55(12):2513–2536CrossRefGoogle Scholar
  16. Canil D (1997) Vanadium partitioning and the oxidation state of Archaean komatiite magmas. Nature 389:842–845CrossRefGoogle Scholar
  17. Canil D (1999) Vanadium partitioning between orthopyroxene, spinel and silicate melt and the redox states of mantle source regions for primary magmas. Geochim Cosmochim Acta 63:557–572CrossRefGoogle Scholar
  18. Canil D, Fedortchouk Y (2001) Olivine-liquid partitioning of vanadium and other trace elements, with applications to modern and ancient picrites. Can Mineral 39(2):319–330CrossRefGoogle Scholar
  19. Canil D, Grondahl C, Lacourse T, Pisiak LK (2016) Trace elements in magnetite from porphyry Cu–Mo–Au deposits in British Columbia, Canada. Ore Geol Rev 72:1116–1128CrossRefGoogle Scholar
  20. Carmichael ISE (1991) The redox states of basic and silicic magmas: a reflection of their source regions? Contrib Mineral Petrol 106:129–141CrossRefGoogle Scholar
  21. Chapman JB, Mason TFD, Weiss DJ, Coles BJ, Wilkinson JJ (2006) Chemical Separation and Isotopic Variations of Cu and Zn From Five Geological Reference Materials. Geostand Geoanal Res 30(1):5–16CrossRefGoogle Scholar
  22. Chappell BW, White AJR (1974) Two contrasting granite types. Pac Geol 8:173–174Google Scholar
  23. Chou I-M (1986) Permeability of precious metals to hydrogen at 2 kb total pressure and elevated temperatures. Am J Sci 286:638–658CrossRefGoogle Scholar
  24. Dare SAS, Barnes S-J, Beaudoin G (2012) Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: implications for provenance discrimination. Geochim Cosmochim Acta 88:27–50CrossRefGoogle Scholar
  25. Dare SAS, Barnes S-J, Beaudoin G, Meric J, Boutroy E, Potvin-Doucet C (2014) Trace elements in magnetite as petrogenetic indicators. Mineral Deposita 49:785–796CrossRefGoogle Scholar
  26. Dauphas N, Roskosz M, Alp EE, Neuville DR, Hu MY, Sio CK, Zhao J, Tissandier L, Médard E, Cordier C (2014) Magma redox and structural controls on iron isotope variations in Earth’s mantle and crust. Earth Planet Sci Lett 398:127–140CrossRefGoogle Scholar
  27. Dickenson MP, Hess PC (1986) The structural role and homogeneous redox equilibria of iron in peraluminous, metaluminous and peralkaline silicate melts. Contrib Mineral Petrol 92(2):207–217CrossRefGoogle Scholar
  28. Dieckmann R (1982) Defects and cation diffusion in magnetite (IV): nonstoichiometry and point defect structure of magnetite (Fe3δO4). Ber Bunsenges Phys Chem 86:112–118CrossRefGoogle Scholar
  29. Eugster HP (1957) Heterogeneous reactions involving oxidation and reduction at high pressures and temperatures. J Chem Phys 26:1760–1761CrossRefGoogle Scholar
  30. Feig ST, Koepke J, Snow JE (2010) Effect of oxygen fugacity and water on phase equilibria of a hydrous tholeiitic basalt. Contrib Mineral Petrol 160(4):551–568CrossRefGoogle Scholar
  31. Fleet ME (1981) The structure of magnetite. Acta Crystallogr B37:917–920CrossRefGoogle Scholar
  32. Foden J, Sossi PA, Wawryk CM (2015) Fe isotopes and the contrasting petrogenesis of A-, I-and S-type granite. Lithos 212:32–44CrossRefGoogle Scholar
  33. Frost CD, Frost BR (2010) On ferroan (A-type) granitoids: their compositional variability and modes of origin. J Petrol 52(1):39–53CrossRefGoogle Scholar
  34. Fuchs JN (1825) Ueber ein neues Product aus Kieselerde und Kali. Arch Für die gesammte Naturlehre 5:385–412Google Scholar
  35. Giuli G, Paris E, Mungall JE, Romano C, Dingwell DB (2004) V oxidation state and coordination number in silicate glasses by XAS. Am Mineral 89:1640–1646CrossRefGoogle Scholar
  36. Grigsby JD (1990) Detrital magnetite as a provenance indicator. J Sedim Res 60:940–951Google Scholar
  37. Holtz F, Johannes W, Tamic N, Behrens H (2001) Maximum and minimum water contents of granitic melts generated in the crust: a reevaluation and implications. Lithos 56:1–14CrossRefGoogle Scholar
  38. Jackson WE, Farges F, Yeager M, Mabrouk PA, Rossano S, Waychunas GA, Solomon EI, Brown GE Jr (2005) Multi-spectroscopic study of Fe (II) in silicate glasses: Implications for the coordination environment of Fe (II) in silicate melts. Geochim Cosmochim Acta 69(17):4315–4332CrossRefGoogle Scholar
  39. Jarosewich E, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analysis. Geostand Geoanalytical Res 4:43–47CrossRefGoogle Scholar
  40. Jenner FE, O’Neill HSC, Arculus RJ, Mavrogenes JA (2010) The magnetite crisis in the evolution of arc-related magmas and the initial concentration of Au, Ag and Cu. J Petrol 51(12):2445–2464CrossRefGoogle Scholar
  41. Karner J, Papike JJ, Shearer CK (2006) Comparative planetary mineralogy: pyroxene major-and minor-element chemistry and partitioning of vanadium between pyroxene and melt in planetary basalts. Am Mineral 91(10):1574–1582CrossRefGoogle Scholar
  42. Katsura T, Wakihara M, Hara S-I, Sugihara T (1975) Some thermodynamic properties in spinel solid solutions with the Fe3O4 component. J Sol State Chem 13(1–2):107–113CrossRefGoogle Scholar
  43. Knipping JL, Behrens H, Wilke M, Goettlicher J, Stabile P (2015) Effect of oxygen fugacity on the coordination and oxidation state of iron in alkali bearing silicate melts. Chem Geol 411:143–154CrossRefGoogle Scholar
  44. Lee C-TA, Leeman WP, Canil D, Li ZXA (2005) Similar V/Sc systematics in MORB and arc basalts: implications for the oxygen fugacities of their mantle source regions. J Petrol 46:2313–2336CrossRefGoogle Scholar
  45. Mallmann G, O’Neill HSC (2009) The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). J Petrol 50:1765–1794CrossRefGoogle Scholar
  46. Mallmann G, O’Neill HSC (2013) Calibration of an empirical thermometer and oxybarometer based on the partitioning of Sc, Y and V between olivine and silicate melt. J Petrol 54(5):933–949CrossRefGoogle Scholar
  47. Massalski TB (1990) Binary alloy phase diagrams, 2nd edn. ASM International, Materials ParkGoogle Scholar
  48. Matjuschkin V, Brooker RA, Tattitch B, Blundy JD, Stamper CC (2015) Control and monitoring of oxygen fugacity in piston cylinder experiments. Contrib Mineral Petrol 169:1–16CrossRefGoogle Scholar
  49. Medard E, McCammon CA, Barr JA, Grove TL (2008) Oxygen fugacity, temperature reproducibility, and H2O contents of nominally anhydrous piston-cylinder experiments using graphite capsules. Am Mineral 93:1838–1844CrossRefGoogle Scholar
  50. Muan A (1963) Silver-palladium alloys As crucible material in studies of low-melting iron silicates. Ceram Bull 42:344–347Google Scholar
  51. Mungall JE (2002) Empirical models relating viscosity and tracer diffusion in magmatic silicate melts. Geochim Cosmochim Acta 66(1):125–143CrossRefGoogle Scholar
  52. Nadoll P, Angerer T, Mauk JL, French D, Walshe J (2014) The chemistry of hydrothermal magnetite: a review. Ore Geol Rev 16:1–32CrossRefGoogle Scholar
  53. Nielsen RL, Forsythe LM, Gallahan WE, Fisk MR (1994) Major- and trace-element magnetite-melt equilibria. Chem Geol 117:167–191CrossRefGoogle Scholar
  54. Nielsen SG, Prytulak J, Halliday AN (2011) Determination of precise and accurate 51V/50V isotope ratios by MC-ICP-MS, part 1: chemical separation of vanadium and mass spectrometric protocols. Geostand Geoanal Res 35:293–306CrossRefGoogle Scholar
  55. Nielsen SG, Prytulak J, Wood BJ, Halliday AN (2014) Vanadium isotopic difference between the silicate Earth and meteorites. Earth Planet Sci Lett 389:167–175CrossRefGoogle Scholar
  56. O’Neill HSC (1987) Quartz-fayalite-iron and quartz-fayalite-magnetite equilibria and the free energy of formation of fayalite (Fe2SiO4) and magnetite (Fe3O4). Am Mineral 72(1–2):67–75Google Scholar
  57. O’Neill HSC, Navrotsky A (1984) Cation distributions and thermodynamic properties of binary spinel solid solutions. Am Mineral 69:733–753Google Scholar
  58. Pauling L (1929) The principles determining the structure of complex ionic crystals. J Am Chem Soc 51:1010–1026CrossRefGoogle Scholar
  59. Petric A, Jacob KT (1982) Thermodynamic properties of Fe3O4–FeV2O4 and Fe3O4–FeCr2O4 spinel solid solutions. J Am Ceram Soc 65(2):117–123CrossRefGoogle Scholar
  60. Prytulak J, Nielsen SG, Halliday AN (2011) Determination of precise and accurate 51V/50V isotope ratios by multi-collector ICP-MS, part 2: isotopic composition of six reference materials plus the allende chondrite and verification tests. Geostand Geoanal Res 35:307–318CrossRefGoogle Scholar
  61. Prytulak J, Nielsen SG, Ionov DA, Halliday AN, Harvey J, Kelley KA, Niu Y, Peate DW, Shimizu K, Sims KWW (2013) The stable vanadium isotope composition of the mantle and mafic lavas. Earth Planet Sci Lett 365:177–189CrossRefGoogle Scholar
  62. Prytulak J, Sossi PA, Halliday AN, Plank T, Savage PS, Woodhead JD (2017) Stable vanadium isotopes as a redox proxy in magmatic systems? Geochem Persp Lett 3(1):75–84CrossRefGoogle Scholar
  63. Radtke AS (1962) Coulsonite, FeV2O4, a spinel-type mineral from Lovelock, Nevada. Am Mineral 47:1284–1291Google Scholar
  64. Righter K, Sutton SR, Newville M, Le L, Schwandt C, Uchida H, Lavina B, Downs RT (2006a) An experimental study of the oxidation state of vanadium in spinel and basaltic melt with implications for the origin of planetary basalt. Am Mineral 91:1643–1656CrossRefGoogle Scholar
  65. Righter K, Leeman W, Hervig R (2006b) Partitioning of Ni, Co and V between spinel-structured oxides and silicate melts: Importance of spinel composition. Chem Geol 227:1–25CrossRefGoogle Scholar
  66. Schauble E (2004) Applying stable isotope fractionation theory to new systems. Rev Mineral Geochem 55:65–111CrossRefGoogle Scholar
  67. Schindler M, Hawthorne FC, Baur WH (2000) Crystal Chemical aspects of vanadium: polyhedral geometries, characteristic bond valences, and polymerization of (Von) polyhedra. Chem Mater 12:1248–1259CrossRefGoogle Scholar
  68. Schuth S, Horn I, Brüske A, Wolff PE, Weyer S (2017) First vanadium isotope analyses of V-rich minerals by femtosecond laser ablation and solution-nebulization MC-ICP-MS. Ore Geo Rev 81:1271–1286CrossRefGoogle Scholar
  69. Shannon RT (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystall A 32(5):751–767CrossRefGoogle Scholar
  70. Shellnutt JG, Zhou MF, Zellmer GF (2009) The role of Fe–Ti oxide crystallization in the formation of A-type granitoids with implications for the Daly gap: an example from the Permian Baima igneous complex, SW China. Chem Geol 259(3–4):204–217CrossRefGoogle Scholar
  71. Sievwright RH, Wilkinson JJ, O’Neill HSC, Berry AJ (2017) Thermodynamic controls on element partitioning between titanomagnetite and andesitic–dacitic silicate melts. Contrib Mineral Petrol 172(8):62CrossRefGoogle Scholar
  72. Sisson TW, Grove TL (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113(2):143–166CrossRefGoogle Scholar
  73. Smith JF (1989) Phase diagrams of binary vanadium alloys. In: Monograph series on alloy phase diagrams. ASM International, Materials Park, p 251Google Scholar
  74. Sossi PA, O’Neill HSC (2017) The effect of bonding environment on iron isotope fractionation between minerals at high temperature. Geochim Cosmochim Acta 196:121–143CrossRefGoogle Scholar
  75. Sossi PA, Halverson GP, Nebel O, Eggins SM (2015) Combined separation of Cu, Fe and Zn from rock matrices and improved analytical protocols for stable isotope determination. Geostand Geoanal Res 39(2):129–149CrossRefGoogle Scholar
  76. Sossi PA, Moynier F, Chaussidon M, Villeneuve J, Kato C, Gounelle M (2017) Early solar system irradiation quantified by linked vanadium and beryllium isotope variations in meteorites. Nat Astron 1:0055CrossRefGoogle Scholar
  77. Sutton SR, Karner J, Papike J, Delaney JS, Shearer C, Newville M, Eng P, Rivers M, Dyar MD (2005) Vanadium K edge XANES of synthetic and natural basaltic glasses and application to microscale oxygen barometry. Geochim Cosmochim Acta 69:2333–2348CrossRefGoogle Scholar
  78. Thornber CR, Roeder PL, Foster JR (1980) The effect of composition on the ferric-ferrous ratio in basaltic liquids at atmospheric pressure. Geochim Cosmochim Acta 44(3):525–532CrossRefGoogle Scholar
  79. Toplis MJ (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib Mineral Petrol 149(1):22–39CrossRefGoogle Scholar
  80. Toplis MJ, Carroll MR (1995) An experimental study of the influence of oxygen fugacity on Fe–Ti oxide stability, phase relations, and mineral—melt equilibria in ferro-basaltic systems. J Petrol 36(5):1137–1170CrossRefGoogle Scholar
  81. Toplis MJ, Corgne A (2002) An experimental study of element partitioning between magnetite, clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium. Contrib Mineral Petrol 144:22–37CrossRefGoogle Scholar
  82. Turner SP, Foden JD, Morrison RS (1992) Derivation of some A-type magmas by fractionation of basaltic magma: an example from the Padthaway Ridge, South Australia. Lithos 28(2):151–179CrossRefGoogle Scholar
  83. Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc 562–581Google Scholar
  84. Wakihara M, Katsura T (1971) The phase equilibria in the FeO–Fe2O3–V2O3 system at 1500 °K. Bull Chem Soc Jpn 44(11):3043–3046CrossRefGoogle Scholar
  85. Woodland AB, O’Neill HSC (1997) Thermodynamic data for Fe-bearing phases obtained using noble metal alloys as redox sensors. Geochim Cosmochim Acta 61:4359–4366CrossRefGoogle Scholar
  86. Wu C, Mason TO (1981) Thermopower measurement of cation distributio in magnetite. J Am Ceram Soc 64(9):520–522CrossRefGoogle Scholar
  87. Wu F, Qin T, Li X, Liu Y, Huang JH, Wu Z, Huang F (2015) First-principles investigation of vanadium isotope fractionation in solution and during adsorption. Earth Planet Sci Lett 426:216–224CrossRefGoogle Scholar
  88. Wu F, Qi Y, Yu H, Tain S, Hou Z, Huang F (2016) Vanadium isotope measurement by MC-ICP-MS. Chem Geol 421:17–25CrossRefGoogle Scholar
  89. Young ED, Tonui E, Manning CE, Schauble EA, Macris CA (2009) Spinel–olivine magnesium isotope thermometry in the mantle and implications for the Mg isotopic composition of Earth. Earth Planet Sci Lett 288:524–533CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Paolo A. Sossi
    • 1
    • 3
  • Julie Prytulak
    • 2
  • Hugh St. C. O’Neill
    • 1
  1. 1.Research School of Earth SciencesAustralian National UniversityCanberraAustralia
  2. 2.Department of Earth Science and EngineeringImperial College LondonLondonUK
  3. 3.Institut de Physique du Globe de Paris, Sorbonne Paris CitéUniversité Paris Diderot, CNRSParisFrance

Personalised recommendations