Skip to main content

Advertisement

Log in

Risk Stratification in Patients with Complicated Parapneumonic Effusions and Empyema Using the RAPID Score

  • PLEURAL DISEASE
  • Published:
Lung Aims and scope Submit manuscript

Abstract

Purpose

Complicated parapneumonic effusions and empyema are a leading cause of morbidity in the United States with over 1 million admissions annually and a mortality rate that remains high in spite of recent advances in diagnosis and treatment. The identification of high risk patients is crucial for improved management and the provision of cost-effective care. The RAPID score is a scoring system comprised of the following variables: renal function, age, purulence, infection source, and dietary factors and has been shown to predict outcomes in patients with pleural space infections.

Methods

In a single center retrospective study, we evaluated 98 patients with complicated parapneumonic effusions and empyema who had tube thoracostomy (with or without Intrapleural fibrinolytic therapy) and assessed treatment success rates, mortality, length of hospital stay, and direct hospitalization costs stratified by three RAPID score categories: low-risk (0–2), medium risk (3–4), and high-risk (5–7) groups.

Results

Treatment success rate was 71%, and the 90 day mortality rate was 12%. There was a positive-graded association between the low, medium and high RAPID score categories and mortality, (5.3%, 8.3% and 22.6%, respectively), length of hospital stay (10, 21, 19 days, respectively), and direct hospitalization costs ($19,909, $36,317 and $43,384, respectively).

Conclusion

Our findings suggest that the RAPID score is a robust tool which could be used to identify patients with complicated parapneumonic effusions and empyema who may be at an increased risk of mortality, prolonged hospitalization, and who may incur a higher cost of treatment. Randomized controlled trials identifying the most effective initial treatment modality for medium- and high-risk patients are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Menéndez R, Torres A, Zalacaín R et al (2004) Risk factors of treatment failure in community acquired pneumonia: implications for disease outcome. Thorax 59:960–965. https://doi.org/10.1136/thx.2003.017756

    Article  PubMed  PubMed Central  Google Scholar 

  2. Maskell NA, Batt S, Hedley EL et al (2006) The bacteriology of pleural infection by genetic and standard methods and its mortality significance. Am J Respir Crit Care Med 174:817–823. https://doi.org/10.1164/rccm.200601-074OC

    Article  PubMed  Google Scholar 

  3. Feller-Kopman D, Light R (2018) Pleural disease. N Engl J Med 378:740–751. https://doi.org/10.1056/NEJMra1403503

    Article  CAS  PubMed  Google Scholar 

  4. Light RW, Girard WM, Jenkinson SG, George RB (1980) Parapneumonic effusions. Am J Med 69:507–512

    Article  CAS  PubMed  Google Scholar 

  5. Falguera M, Carratalà J, Bielsa S et al (2011) Predictive factors, microbiology and outcome of patients with parapneumonic effusion. Eur Respir J 38:1173–1179. https://doi.org/10.1183/09031936.00000211

    Article  CAS  PubMed  Google Scholar 

  6. Dean NC, Griffith PP, Sorensen JS et al (2016) Pleural effusions at first ED encounter predict worse clinical outcomes in patients with pneumonia. Chest 149:1509–1515. https://doi.org/10.1016/j.chest.2015.12.027

    Article  PubMed  PubMed Central  Google Scholar 

  7. Idell S, Rahman NM (2018) Intrapleural fibrinolytic therapy for empyema and pleural loculation: knowns and unknowns. Ann Am Thorac Soc. https://doi.org/10.1513/AnnalsATS.201711-848PS

    Article  PubMed  Google Scholar 

  8. Rahman NM, Kahan BC, Miller RF et al (2014) A clinical score (RAPID) to identify those at risk for poor outcome at presentation in patients with pleural infection. Chest 145:848–855. https://doi.org/10.1378/chest.13-1558

    Article  PubMed  Google Scholar 

  9. Sahn SA (1993) Management of complicated parapneumonic effusions. Am Rev Respir Dis 148:813–817. https://doi.org/10.1164/ajrccm/148.3.813

    Article  CAS  PubMed  Google Scholar 

  10. Strange C (2017) Parapneumonic effusion and empyema in adults—UpToDate. https://www.uptodate.com/contents/parapneumonic-effusion-and-empyema-in-adults?search=empyema&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1#H12. Accessed 6 Mar 2018

  11. Wait MA, Sharma S, Hohn J, Dal Nogare A (1997) A randomized trial of empyema therapy. Chest 111:1548–1551. https://doi.org/10.1378/chest.111.6.1548

    Article  CAS  PubMed  Google Scholar 

  12. White HD, Henry C, Stock EM et al (2015) Predicting long-term outcomes in pleural infections. RAPID score for risk stratification. Annals ATS 12:1310–1316. https://doi.org/10.1513/AnnalsATS.201505-272OC

    Article  Google Scholar 

  13. Pereira RR, Alvim CG, Andrade CR de, Ibiapina C da C (2017) Parapneumonic pleural effusion: early versus late thoracoscopy. J Bras Pneumol 43:344–350. https://doi.org/10.1590/S1806-37562016000000261

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lim TK, Chin NK (1999) Empirical treatment with fibrinolysis and early surgery reduces the duration of hospitalization in pleural sepsis. Eur Respir J 13:514–518

    Article  CAS  PubMed  Google Scholar 

  15. Letheulle J, Kerjouan M, Bénézit F et al (2015) Les épanchements pleuraux parapneumoniques: épidémiologie, diagnostic, classification, traitement. Rev Mal Respir 32:344–357. https://doi.org/10.1016/j.rmr.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  16. Schweigert M, Solymosi N, Dubecz A et al (2016) Surgery for parapneumonic pleural empyema—what influence does the rising prevalence of multimorbidity and advanced age has on the current outcome? Surgeon 14:69–75. https://doi.org/10.1016/j.surge.2014.05.002

    Article  PubMed  Google Scholar 

  17. Chen W, Lin Y-C, Liang S-J et al (2009) Hospital-acquired thoracic empyema in adults: a 5-year study. South Med J 102:909–914. https://doi.org/10.1097/SMJ.0b013e3181b22c52

    Article  PubMed  Google Scholar 

  18. Plutinsky J, Taligova Z, Sabova R, Plutinsky M (2016) Why Fibrinolysis Is Recommended in our Local Standards of Empyema Management. In: B36. PLEURAL DISEASE: CLINICAL STUDIES. American Thoracic Society, Washington pp A3244–A3244

    Google Scholar 

  19. Maskell NA, Davies CWH, Nunn AJ et al (2005) U.K. controlled trial of intrapleural streptokinase for pleural infection. N Engl J Med 352:865–874. https://doi.org/10.1056/NEJMoa042473

    Article  CAS  PubMed  Google Scholar 

  20. Rahman NM, Maskell NA, West A et al (2011) Intrapleural use of tissue plasminogen activator and DNase in pleural infection. N Engl J Med 365:518–526. https://doi.org/10.1056/NEJMoa1012740

    Article  CAS  PubMed  Google Scholar 

  21. Bishwakarma R, Shah S, Frank L et al (2017) Mixing it up: coadministration of tPA/DNase in complicated parapneumonic pleural effusions and empyema. J Bronchol Interv Pulmonol 24:40–47. https://doi.org/10.1097/LBR.0000000000000334

    Article  Google Scholar 

  22. Mandal AK, Thadepalli H, Mandal AK, Chettipally U (1998) Outcome of primary empyema thoracis: therapeutic and microbiologic aspects. Ann Thorac Surg 66:1782–1786

    Article  CAS  PubMed  Google Scholar 

  23. Suárez PR, Gilart JF, Pérez JMH et al (2012) Treatment of complicated parapneumonic pleural effusion and pleural parapneumonic empyema. Med Sci Monit 18:CR443–CR449. https://doi.org/10.12659/MSM.883212

    Article  PubMed Central  Google Scholar 

  24. Corcoran JP, Wrightson JM, Belcher E et al (2015) Pleural infection: past, present, and future directions. Lancet Respir Med 3:563–577. https://doi.org/10.1016/S2213-2600(15)00185-X

    Article  PubMed  Google Scholar 

  25. Ramanjaneya R, Zuhaib BMM M (2016) Medical Thoracoscopy in the Treatment of Complicated Parapneumonic Effusions. In: B36. PLEURAL DISEASE: CLINICAL STUDIES. American Thoracic Society, pp A3227–A3227

  26. Davies HE, Rosenstengel A, Lee YCG (2011) The diminishing role of surgery in pleural disease. Curr Opin Pulm Med 17:247–254. https://doi.org/10.1097/MCP.0b013e3283474121

    Article  PubMed  Google Scholar 

  27. Lee H, Park S, Shin H, Kim K (2015) Assessment of the usefulness of video-assisted thoracoscopic surgery in patients with non-tuberculous thoracic empyema. J Thorac Dis 7:394–399. https://doi.org/10.3978/j.issn.2072-1439.2014.12.42

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ahmed AH, Yacoub TE (2010) Intrapleural therapy in management of complicated parapneumonic effusions and empyema. Clin Pharmacol 2:213–221. https://doi.org/10.2147/CPAA.S14104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bilgin M, Akcali Y, Oguzkaya F (2006) Benefits of early aggressive management of empyema thoracis. ANZ J Surg 76:120–122. https://doi.org/10.1111/j.1445-2197.2006.03666.x

    Article  PubMed  Google Scholar 

  30. Barad SJ, Howell SM, Tom J (2018) Is a shortened length of stay and increased rate of discharge to home associated with a low readmission rate and cost-effectiveness after primary total knee arthroplasty? Arthroplasty Today 4:107–112. https://doi.org/10.1016/j.artd.2015.08.003

    Article  PubMed  Google Scholar 

  31. Tian W (2016) An All-Payer View of Hospital Discharge to Postacute Care, 2013 #205. Agency for Healthcare Research and Quality

  32. Chen KY, Hsueh PR, Liaw YS et al (2000) A 10-year experience with bacteriology of acute thoracic empyema: emphasis on Klebsiella pneumoniae in patients with diabetes mellitus. Chest 117:1685–1689

    Article  CAS  PubMed  Google Scholar 

  33. Menzies SM, Rahman NM, Wrightson JM et al (2011) Blood culture bottle culture of pleural fluid in pleural infection. Thorax 66:658–662. https://doi.org/10.1136/thx.2010.157842

    Article  PubMed  Google Scholar 

  34. Marks DJB, Fisk MD, Koo CY et al (2012) Thoracic empyema: a 12-year study from a UK tertiary cardiothoracic referral centre. PLoS ONE 7:e30074. https://doi.org/10.1371/journal.pone.0030074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Park C-K, Oh H-J, Choi H-Y et al (2016) Microbiological characteristics and predictive factors for mortality in pleural infection: a single-center cohort study in Korea. PLoS ONE 11:. https://doi.org/10.1371/journal.pone.0161280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Siersema PD, Marie S de, Zeijl JH van et al (1992) Blood culture bottles are superior to lysis-centrifugation tubes for bacteriological diagnosis of spontaneous bacterial peritonitis. J Clin Microbiol 30:667–669

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Scott E. Kopec, MD for his support in this project.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

ST, AFS, and DBK designed the study and contributed to analysis and draft manuscripts. RNS, ST, JH, and SA were involved data extraction. ST performed the analysis and all authors were involved in the write up and final corrections of the manuscript.

Corresponding author

Correspondence to Sunkaru Touray.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest with regard to the content of this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 32 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Touray, S., Sood, R.N., Lindstrom, D. et al. Risk Stratification in Patients with Complicated Parapneumonic Effusions and Empyema Using the RAPID Score. Lung 196, 623–629 (2018). https://doi.org/10.1007/s00408-018-0146-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-018-0146-2

Keywords

Navigation