, Volume 196, Issue 1, pp 49–57 | Cite as

HIV Infection, Pulmonary Tuberculosis, and COPD in Rural Uganda: A Cross-Sectional Study

  • Crystal M. North
  • Joseph G. Allen
  • Samson Okello
  • Ruth Sentongo
  • Bernard Kakuhikire
  • Edward T. Ryan
  • Alexander C. Tsai
  • David C. Christiani
  • Mark J. Siedner



HIV is associated with chronic obstructive pulmonary disease (COPD) in high resource settings. Similar relationships are less understood in low resource settings. We aimed to estimate the association between HIV infection, tuberculosis, and COPD in rural Uganda.


The Uganda Non-communicable Diseases and Aging Cohort study observes people 40 years and older living with HIV (PLWH) on antiretroviral therapy, and population-based HIV-uninfected controls in rural Uganda. Participants completed respiratory questionnaires and post-bronchodilator spirometry.


Among 269 participants with spirometry, median age was 52 (IQR 48–55), 48% (n = 130) were ever-smokers, and few (3%, n = 9) reported a history of COPD or asthma. All participants with prior tuberculosis (7%, n = 18) were PLWH. Among 143 (53%) PLWH, median CD4 count was 477 cells/mm3 and 131 (92%) were virologically suppressed. FEV1 was lower among older individuals (− 0.5%pred/year, 95% CI 0.2–0.8, p < 0.01) and those with a history of tuberculosis (− 14.4%pred, 95% CI − 23.5 to − 5.3, p < 0.01). COPD was diagnosed in 9 (4%) participants, eight of whom (89%) were PLWH, six of whom (67%) had a history of tuberculosis, and all of whom (100%) were men. Among 287 participants with complete symptom questionnaires, respiratory symptoms were more likely among women (AOR 3.9, 95% CI 2.0–7.7, p < 0.001) and those in homes cooking with charcoal (AOR 3.2, 95% CI 1.4–7.4, p = 0.008).


In rural Uganda, COPD may be more prevalent among PLWH, men, and those with prior tuberculosis. Future research is needed to confirm these findings and evaluate their broader impacts on health.


Spirometry Africa Lung function AIDS Tuberculosis 



We thank the Uganda Non-communicable Diseases and Aging Cohort study participants who made this study possible by participating in this work; and Sheila Abaasabyoona, Zulaika Namboga, Doreen Kyomuhendo, Alan Babweteera, and members of the HopeNet Study team for research assistance. No endorsement of manuscript contents or conclusions should be inferred from these acknowledgements.


This study was funded by the U.S. National Institutes of Health R21HL124712, P30AI060354, P30ES000002, R24AG044325, R25TW009337, and Friends of a Healthy Uganda. The authors acknowledge the following additional sources of support: T32HL116275, K23MH096620, and K23MH099916. Travel support for study investigators was provided by the travel award programs of Massachusetts General Hospital Global Health and the Partners Center of Expertise in Global and Humanitarian Health. Biostatistical consultation was provided with support from Harvard Catalyst, the Harvard Clinical and Translational Science Center (UL1TR001102) and financial contributions from Harvard University and its affiliated academic healthcare centers. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Harvard Catalyst, Harvard University, and its affiliated academic healthcare centers, or the National Institutes of Health.

Compliance with Ethical Standards

Conflict of interest


Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional an/or national research committee and with the 1964 Helsinki declation and its later amendemnts or comparable ethical standards.

Supplementary material

408_2017_80_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 17 KB)


  1. 1.
    GBD 2013 Mortality and Causes of Death Collaborators (2015) Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385(9963):117–171. CrossRefGoogle Scholar
  2. 2.
    Diaz-Guzman E, Mannino DM (2014) Epidemiology and prevalence of chronic obstructive pulmonary disease. Clin Chest Med 35(1):7–16. CrossRefPubMedGoogle Scholar
  3. 3.
    Eisner MD, Anthonisen N, Coultas D et al (2010) An official American Thoracic Society public policy statement: novel risk factors and the global burden of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 182(5):693–718. CrossRefPubMedGoogle Scholar
  4. 4.
    Fourm of Interntational Respiratory Societies (2013) Respiratory diseases in the world: realities of today—opportunities for tomorrow.
  5. 5.
    Drummond MB, Huang L, Diaz PT et al (2015) Factors associated with abnormal spirometry among HIV-infected individuals. AIDS 29(13):1691–1700. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Crothers K, Butt AA, Gibert CL et al (2006) Increased COPD among HIV-positive compared to HIV-negative veterans. Chest 130(5):1326–1333. CrossRefPubMedGoogle Scholar
  7. 7.
    Crothers K, Huang L, Goulet JL et al (2011) HIV infection and risk for incident pulmonary diseases in the combination antiretroviral therapy era. Am J Respir Crit Care Med 183(3):388–395. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Drummond MB, Merlo CA, Astemborski J et al (2013) The effect of HIV infection on longitudinal lung function decline among IDUs: a prospective cohort. AIDS 27(8):1303–1311. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    George MP, Kannass M, Huang L et al (2009) Respiratory symptoms and airway obstruction in HIV-infected subjects in the HAART era. PLoS ONE 4(7):e6328. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Drummond MB, Kirk GD, Astemborski J et al (2012) Association between obstructive lung disease and markers of HIV infection in a high-risk cohort. Thorax 67(4):309–314. CrossRefPubMedGoogle Scholar
  11. 11.
    Risso K, Guillouet-de-Salvador F, Valerio L et al (2017) COPD in HIV-infected patients: CD4 cell count highly correlated. PLoS ONE 12(1):e0169359. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    van Zyl Smit RN, Pai M, Yew WW et al (2010) Global lung health: the colliding epidemics of tuberculosis, tobacco smoking, HIV and COPD. Eur Respir J 35(1):27–33. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ferris BG (1978) Epidemiology standardization project (American Thoracic Society). Am Rev Respir Dis 118(6 Pt 2):1–120PubMedGoogle Scholar
  14. 14.
    Filmer D, Pritchett LH (2001) Estimating wealth effects without expenditure data—or tears: an application to educational enrollments in states of India. Demography 38(1):115–132PubMedGoogle Scholar
  15. 15.
    WHO STEPwise approach to noncommunicable disease risk factor surveillance (STEPS).
  16. 16.
    Miller MR, Hankinson J, Brusasco V et al (2005) Standardisation of spirometry. Eur Respir J 26(2):319–338. CrossRefPubMedGoogle Scholar
  17. 17.
    Hankinson JL, Odencrantz JR, Fedan KB (1999) Spirometric reference values from a sample of the general U.S. population. Am J Respir Crit Care Med 159(1):179–187. CrossRefPubMedGoogle Scholar
  18. 18.
    Musafiri S, van Meerbeeck JP, Musango L et al (2013) Spirometric reference values for an East-African population. Respiration 85(4):297–304. CrossRefPubMedGoogle Scholar
  19. 19.
    Pellegrino R, Viegi G, Brusasco V et al (2005) Interpretative strategies for lung function tests. Eur Respir J 26(5):948–968. CrossRefPubMedGoogle Scholar
  20. 20.
    Vestbo J, Hurd SS, Agusti AG et al (2013) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 187(4):347–365. CrossRefPubMedGoogle Scholar
  21. 21.
    Pefura-Yone EW, Fodjeu G, Kengne AP et al (2015) Prevalence and determinants of chronic obstructive pulmonary disease in HIV infected patients in an African country with low level of tobacco smoking. Respir Med 109(2):247–254. CrossRefPubMedGoogle Scholar
  22. 22.
    Akanbi MO, Taiwo BO, Achenbach CJ et al. (2015) HIV associated chronic obstructive pulmonary disease in Nigeria. J AIDS Clin Res. PubMedPubMedCentralGoogle Scholar
  23. 23.
    Meghji J, Nadeau G, Davis KJ et al (2016) Noncommunicable lung disease in Sub-Saharan Africa. A community-based cross-sectional study of adults in urban Malawi. Am J Respir Crit Care Med 194(1):67–76. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gingo MR, Morris A, Crothers K (2013) Human immunodeficiency virus-associated obstructive lung diseases. Clin Chest Med 34(2):273–282. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Amaral AF, Coton S, Kato B et al (2015) Tuberculosis associates with both airflow obstruction and low lung function: BOLD results. Eur Respir J 46(4):1104–1112. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Fitzpatrick ME, Singh V, Bertolet M et al (2014) Relationships of pulmonary function, inflammation, and T-cell activation and senescence in an HIV-infected cohort. AIDS 28(17):2505–2515. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Fitzpatrick ME, Nouraie M, Gingo MR et al (2016) Novel relationships of markers of monocyte activation and endothelial dysfunction with pulmonary dysfunction in HIV-infected persons. AIDS 30(9):1327–1339. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lassiter C, Fan X, Joshi PC et al (2009) HIV-1 transgene expression in rats causes oxidant stress and alveolar epithelial barrier dysfunction. AIDS Res Ther 6:1. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Neff CP, Chain JL, MaWhinney S et al (2015) Lymphocytic alveolitis is associated with the accumulation of functionally impaired HIV-specific T cells in the lung of antiretroviral therapy-naive subjects. Am J Respir Crit Care Med 191(4):464–473. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Jia H, Lohr M, Jezequel S et al (2001) Cysteine-rich and basic domain HIV-1 Tat peptides inhibit angiogenesis and induce endothelial cell apoptosis. Biochem Biophy Res Commun 283(2):469–479. CrossRefGoogle Scholar
  31. 31.
    Morris A, Alexander T, Radhi S et al (2009) Airway obstruction is increased in pneumocystis-colonized human immunodeficiency virus-infected outpatients. J Clin Microbiol 47(11):3773–3776. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kristoffersen US, Lebech AM, Mortensen J et al (2012) Changes in lung function of HIV-infected patients: a 4.5-year follow-up study. Clin Physiol Funct Imaging 32(4):288–295. CrossRefPubMedGoogle Scholar
  33. 33.
    Gingo MR, George MP, Kessinger CJ et al (2010) Pulmonary function abnormalities in HIV-infected patients during the current antiretroviral therapy era. Am J Respir Crit Care Med 182(6):790–796. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kunisaki KM, Niewoehner DE, Collins G et al (2016) Pulmonary effects of immediate versus deferred antiretroviral therapy in HIV-positive individuals: a nested substudy within the multicentre, international, randomised, controlled strategic timing of antiretroviral treatment (START) trial. Lancet Respir Med 4(12):980–989. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Siedner MJ, Ng CK, Bassett IV et al (2015) Trends in CD4 count at presentation to care and treatment initiation in sub-Saharan Africa, 2002–2013: a meta-analysis. Clin Infect Dis 60(7):1120–1127. PubMedGoogle Scholar
  36. 36.
    Boum Y, 2nd, Atwine D, Orikiriza P et al. (2014) Male Gender is independently associated with pulmonary tuberculosis among sputum and non-sputum producers people with presumptive tuberculosis in Southwestern Uganda. BMC Infect Dis 14:638. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Borgdorff MW, Nagelkerke NJ, Dye C et al (2000) Gender and tuberculosis: a comparison of prevalence surveys with notification data to explore sex differences in case detection. Int J Tuberc Lung Dis 4(2):123–132PubMedGoogle Scholar
  38. 38.
    Hamid Salim MA, Declercq E, Van Deun A et al (2004) Gender differences in tuberculosis: a prevalence survey done in Bangladesh. Int J Tuberc Lung Dis 8(8):952–957PubMedGoogle Scholar
  39. 39.
    Neyrolles O, Quintana-Murci L (2009) Sexual inequality in tuberculosis. PLoS Med 6(12):e1000199. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    van Gemert F, Kirenga B, Chavannes N et al (2015) Prevalence of chronic obstructive pulmonary disease and associated risk factors in Uganda (FRESH AIR Uganda): a prospective cross-sectional observational study. Lancet Glob Health 3(1):e44–e51. CrossRefPubMedGoogle Scholar
  41. 41.
    Buist AS, McBurnie MA, Vollmer WM et al (2007) International variation in the prevalence of COPD (the BOLD Study): a population-based prevalence study. Lancet 370(9589):741–750. CrossRefPubMedGoogle Scholar
  42. 42.
    Adeloye D, Basquill C, Papana A et al (2015) An estimate of the prevalence of COPD in Africa: a systematic analysis. COPD 12(1):71–81. CrossRefPubMedGoogle Scholar
  43. 43.
    Pinkerton KE, Harbaugh M, Han MK et al (2015) Women and lung disease. Sex differences and global health disparities. Am J Respir Crit Care Med 192(1):11–16. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Hardin M, Cho MH, Sharma S et al (2017) Sex-based genetic association study identifies CELSR1 as a possible chronic obstructive pulmonary disease risk locus among women. Am J Respir Cell Mol Biol 56(3):332–341. CrossRefPubMedGoogle Scholar
  45. 45.
    Wan ES, Qiu W, Carey VJ et al (2015) Smoking-associated site-specific differential methylation in buccal mucosa in the COPDGene study. Am J Respir Cell Mol Biol 53(2):246–254. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Amaral AFS, Strachan DP, Burney PGJ et al (2017) Female smokers are at greater risk of airflow obstruction than male smokers. UK biobank. Am J Respir Crit Care Med 195(9):1226–1235. CrossRefPubMedGoogle Scholar
  47. 47.
    Kruse GR, Bangsberg DR, Hahn JA et al (2014) Tobacco use among adults initiating treatment for HIV infection in rural Uganda. AIDS Behav 18(7):1381–1389. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Pampel F (2008) Tobacco use in sub-Sahara Africa: estimates from the demographic health surveys. Soc Sci Med 66(8):1772–1783. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Mills EJ, Bakanda C, Birungi J et al (2011) Life expectancy of persons receiving combination antiretroviral therapy in low-income countries: a cohort analysis from Uganda. Ann Intern Med 155(4):209–216. CrossRefPubMedGoogle Scholar
  50. 50.
    Nsanzimana S, Remera E, Kanters S et al (2015) Life expectancy among HIV-positive patients in Rwanda: a retrospective observational cohort study. Lancet Glob Health 3(3):e169–e177. CrossRefPubMedGoogle Scholar
  51. 51.
    Bor J, Herbst AJ, Newell ML et al (2013) Increases in adult life expectancy in rural South Africa: valuing the scale-up of HIV treatment. Science 339(6122):961–965. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Crystal M. North
    • 1
    • 2
    • 3
  • Joseph G. Allen
    • 3
  • Samson Okello
    • 4
  • Ruth Sentongo
    • 4
  • Bernard Kakuhikire
    • 4
  • Edward T. Ryan
    • 2
    • 5
    • 6
  • Alexander C. Tsai
    • 2
    • 7
  • David C. Christiani
    • 1
    • 2
    • 3
  • Mark J. Siedner
    • 2
    • 4
    • 5
  1. 1.Division of Pulmonary and Critical Care MedicineMassachusetts General HospitalBostonUSA
  2. 2.Harvard Medical SchoolBostonUSA
  3. 3.Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonUSA
  4. 4.Mbarara University of Science and TechnologyMbararaUganda
  5. 5.Division of Infectious DiseasesMassachusetts General HospitalBostonUSA
  6. 6.Department of Immunology and Infectious DiseasesHarvard T.H. Chan School of Public HealthBostonUSA
  7. 7.Chester M. Pierce, MD Division of Global PsychiatryMassachusetts General HospitalBostonUSA

Personalised recommendations