Skip to main content

Advertisement

Log in

Airway Epithelial Cell Release of GABA is Regulated by Protein Kinase A

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Introduction

γ-amino butyric acid (GABA) is not only the major inhibitory neurotransmitter in the central nervous system (CNS), but it also plays an important role in the lung, mediating airway smooth muscle relaxation and mucus production. As kinases such as protein kinase A (PKA) are known to regulate the release and reuptake of GABA in the CNS by GABA transporters, we hypothesized that β-agonists would affect GABA release from airway epithelial cells through activation of PKA.

Methods

C57/BL6 mice received a pretreatment of a β-agonist or vehicle (PBS), followed by methacholine or PBS. Bronchoalveolar lavage (BAL) was collected and the amount of GABA was quantified using HPLC mass spectrometry. For in vitro studies, cultured BEAS-2B human airway epithelial cells were loaded with 3H-GABA. 3H-GABA released was measured during activation and inhibition of PKA and tyrosine kinase signaling pathways.

Results

β-agonist pretreatment prior to methacholine challenge attenuated in vivo GABA release in mouse BAL and 3H-GABA release from depolarized BEAS-2B cells. GABA release was also decreased in BEAS-2B cells by increases in cAMP but not by Epac or tyrosine kinase activation.

Conclusion

β-agonists decrease GABA release from airway epithelium through the activation of cAMP and PKA. This has important therapeutic implications as β-agonists and GABA are important mediators of both mucus production and airway smooth muscle tone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gallos G, Emala CW (2013) Anesthetic effects on gamma-aminobutyric acid A receptors: not just on your nerves. Anesthesiology 118(5):1013–1015. doi:10.1097/ALN.0b013e31828e1865

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mizuta K, Xu D, Pan Y et al (2008) GABAA receptors are expressed and facilitate relaxation in airway smooth muscle. Am J Physiol Lung C 294(6):L1206–L1216. doi:10.1152/ajplung.00287.2007

    Article  CAS  Google Scholar 

  3. Mizuta K, Osawa Y, Mizuta F et al (2008) Functional expression of GABAB receptors in airway epithelium. Am J Resp Cell Mol 39(3):296–304. doi:10.1165/rcmb.2007-0414OC

    Article  CAS  Google Scholar 

  4. Gallos G, Yim P, Chang S et al (2012) Targeting the restricted alpha-subunit repertoire of airway smooth muscle GABAA receptors augments airway smooth muscle relaxation. Am J Physiol Lung C 302(2):L248–L256. doi:10.1152/ajplung.00131.2011

    Article  CAS  Google Scholar 

  5. Gallos G, Yocum GT, Siviski ME et al (2015) Selective targeting of the alpha5-subunit of GABAA receptors relaxes airway smooth muscle and inhibits cellular calcium handling. Am J Physiol Lung C 308(9):L931–L942. doi:10.1152/ajplung.00107.2014

    Article  Google Scholar 

  6. Gallos G, Gleason NR, Virag L et al (2009) Endogenous gamma-aminobutyric acid modulates tonic guinea pig airway tone and propofol-induced airway smooth muscle relaxation. Anesthesiology 110(4):748–758

    Article  PubMed  PubMed Central  Google Scholar 

  7. Davies DE (2014) Epithelial barrier function and immunity in asthma. An Am Thorac Soc 11(Suppl 5):S244–S251. doi:10.1513/AnnalsATS.201407-304AW

    Article  Google Scholar 

  8. Keros S, Hablitz JJ (2005) Subtype-specific GABA transporter antagonists synergistically modulate phasic and tonic GABAA conductances in rat neocortex. J Neurophysiol 94(3):2073–2085. doi:10.1152/jn.00520.2005

    Article  CAS  PubMed  Google Scholar 

  9. Xiang YY, Wang S, Liu M et al (2007) A GABAergic system in airway epithelium is essential for mucus overproduction in asthma. Nat Med 13(7):862–867. doi:10.1038/nm1604

    Article  CAS  PubMed  Google Scholar 

  10. Zaidi S, Gallos G, Yim PD et al (2011) Functional expression of gamma-amino butyric acid transporter 2 in human and guinea pig airway epithelium and smooth muscle. Am J Respir Cell Mol Biol 45(2):332–339. doi:10.1165/rcmb.2010-0177OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fu XW, Wood K, Spindel ER (2011) Prenatal nicotine exposure increases GABA signaling and mucin expression in airway epithelium. Am J Respir Cell Mol Biol 44(2):222–229. doi:10.1165/rcmb.2010-0109OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gallos G, Townsend E, Yim P et al (2013) Airway epithelium is a predominant source of endogenous airway GABA and contributes to relaxation of airway smooth muscle tone. Am J Physiol Lung C 304(3):L191–L197. doi:10.1152/ajplung.00274.2012

    Article  CAS  Google Scholar 

  13. Wu Y, Wang W, Diez-Sampedro A et al (2007) Nonvesicular inhibitory neurotransmission via reversal of the GABA transporter GAT-1. Neuron 56(5):851–865. doi:10.1016/j.neuron.2007.10.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu Y, Wang W, Richerson GB (2001) GABA transaminase inhibition induces spontaneous and enhances depolarization-evoked GABA efflux via reversal of the GABA transporter. J Neurosci 21(8):2630–2639

    CAS  PubMed  Google Scholar 

  15. Gonzalez B, Paz F, Floran L et al (2006) Adenosine A2A receptor stimulation decreases GAT-1-mediated GABA uptake in the globus pallidus of the rat. Neuropharmacology 51(1):154–159. doi:10.1016/j.neuropharm.2006.03.011

    Article  CAS  PubMed  Google Scholar 

  16. Gomeza J, Gimenez C, Zafra F (1994) Cellular distribution and regulation by cAMP of the GABA transporter (GAT-1) mRNA. Brain Res Mol Brain Res 21(1–2):150–156

    Article  CAS  PubMed  Google Scholar 

  17. Tian Y, Kapatos G, Granneman JG et al (1994) Dopamine and gamma-aminobutyric acid transporters: differential regulation by agents that promote phosphorylation. Neurosci Lett 173(1–2):143–146

    Article  CAS  PubMed  Google Scholar 

  18. Cristovao-Ferreira S, Vaz SH, Ribeiro JA et al (2009) Adenosine A2A receptors enhance GABA transport into nerve terminals by restraining PKC inhibition of GAT-1. J Neurochem 109(2):336–347. doi:10.1111/j.1471-4159.2009.05963.x

    Article  CAS  PubMed  Google Scholar 

  19. Wang Y, Luo Q, Xu Y et al (2009) Gamma-aminobutyric acid transporter 1 negatively regulates T cell activation and survival through protein kinase C-dependent signaling pathways. J Immunol 183(5):3488–3495. doi:10.4049/jimmunol.0900767

    Article  CAS  PubMed  Google Scholar 

  20. Law RM, Stafford A, Quick MW (2000) Functional regulation of gamma-aminobutyric acid transporters by direct tyrosine phosphorylation. J Biol Chem 275(31):23986–23991. doi:10.1074/jbc.M910283199

    Article  CAS  PubMed  Google Scholar 

  21. Beckman ML, Bernstein EM, Quick MW (1999) Multiple G protein-coupled receptors initiate protein kinase C redistribution of GABA transporters in hippocampal neurons. J Neurosci 19(11):RC9

    CAS  PubMed  Google Scholar 

  22. Morgan SJ, Deshpande DA, Tiegs BC et al (2014) β-Agonist-mediated relaxation of airway smooth muscle is protein kinase A-dependent. J Biol Chem 289(33):23065–23074. doi:10.1074/jbc.M114.557652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Billington CK, Ojo OO, Penn RB et al (2013) cAMP regulation of airway smooth muscle function. Pulm Pharmacol Ther 26(1):112–120. doi:10.1016/j.pupt.2012.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Inagaki S, Toyo’oka T (2012) Amino acid analysis via LC-MS method after derivatization with quaternary phosphonium. Methods Mol Biol 828:47–54. doi:10.1007/978-1-61779-445-2_5

    Article  CAS  PubMed  Google Scholar 

  25. Gosens R, Stelmack GL, Dueck G et al (2006) Role of caveolin-1 in p42/p44 MAP kinase activation and proliferation of human airway smooth muscle. Am J Physiol Lung C 291(3):L523–L534. doi:10.1152/ajplung.00013.2006

    Article  CAS  Google Scholar 

  26. Gallos G, Remy KE, Danielsson J et al (2013) Functional expression of the TMEM16 family of calcium-activated chloride channels in airway smooth muscle. Am J Physiol Lung C 305(9):L625–L634. doi:10.1152/ajplung.00068.2013

    Article  CAS  Google Scholar 

  27. Saino T, Watson EL (2009) Inhibition of serine/threonine phosphatase enhances arachidonic acid-induced [Ca2+]i via protein kinase A. Am J Physiol Cell Physiol 296(1):C88–C96. doi:10.1152/ajpcell.00281.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yokoyama U, Minamisawa S, Quan H et al (2008) Prostaglandin E2-activated Epac promotes neointimal formation of the rat ductus arteriosus by a process distinct from that of cAMP-dependent protein kinase A. J Biol Chem 283(42):28702–28709. doi:10.1074/jbc.M804223200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moreno-Delgado D, Gomez-Ramirez J, Torrent-Moreno A et al (2009) Different role of cAMP dependent protein kinase and CaMKII in H3 receptor regulation of histamine synthesis and release. Neuroscience 164(3):1244–1251. doi:10.1016/j.neuroscience.2009.08.068

    Article  CAS  PubMed  Google Scholar 

  30. Gloerich M, Bos JL (2010) Epac: defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol 50:355–375. doi:10.1146/annurev.pharmtox.010909.105714

    Article  CAS  PubMed  Google Scholar 

  31. Kwon HJ, Kim GE, Lee YT et al (2013) Inhibition of platelet-derived growth factor receptor tyrosine kinase and downstream signaling pathways by Compound C. Cell Signal 25(4):883–897. doi:10.1016/j.cellsig.2012.12.016

    Article  CAS  PubMed  Google Scholar 

  32. de Rooij J, Zwartkruis FJ, Verheijen MH et al (1998) Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396(6710):474–477. doi:10.1038/24884

    Article  PubMed  Google Scholar 

  33. Kawasaki H, Springett GM, Mochizuki N et al (1998) A family of cAMP-binding proteins that directly activate Rap1. Science 282(5397):2275–2279

    Article  CAS  PubMed  Google Scholar 

  34. Salathe M (2002) Effects of beta-agonists on airway epithelial cells. J Allergy Clin Immunol 110(6 Suppl):S275–S281

    Article  CAS  PubMed  Google Scholar 

  35. Wyatt TA, Spurzem JR, May K et al (1998) Regulation of ciliary beat frequency by both PKA and PKG in bovine airway epithelial cells. Am J Physiol 275(4 Pt 1):L827–L835

    CAS  PubMed  Google Scholar 

  36. Braiman A, Zagoory O, Priel Z (1998) PKA induces Ca2+ release and enhances ciliary beat frequency in a Ca2+-dependent and -independent manner. Am J Physiol 275(3 Pt 1):C790–C797

    CAS  PubMed  Google Scholar 

  37. Toledo AC, Arantes-Costa FM, Macchione M et al (2011) Salbutamol improves markers of epithelial function in mice with chronic allergic pulmonary inflammation. Respir Physiol Neurobiol 177(2):155–161. doi:10.1016/j.resp.2011.03.016

    Article  CAS  PubMed  Google Scholar 

  38. Frohock JI, Wijkstrom-Frei C, Salathe M (1985) Effects of albuterol enantiomers on ciliary beat frequency in ovine tracheal epithelial cells. J Appl Physiol 92(6):2396–2402. doi:10.1152/japplphysiol.00755.2001

    Article  Google Scholar 

  39. Meyer T, Reitmeir P, Brand P et al (2011) Effects of formoterol and tiotropium bromide on mucus clearance in patients with COPD. Respir Med 105(6):900–906. doi:10.1016/j.rmed.2011.02.007

    Article  PubMed  Google Scholar 

  40. Hasani A, Toms N, O’Connor J et al (2003) Effect of salmeterol xinafoate on lung mucociliary clearance in patients with asthma. Respir Med 97(6):667–671

    Article  CAS  PubMed  Google Scholar 

  41. Lu WY, Inman MD (2009) Gamma-aminobutyric acid nurtures allergic asthma. Clin Exp Allergy 39(7):956–961. doi:10.1111/j.1365-2222.2009.03265.x

    Article  CAS  PubMed  Google Scholar 

  42. Gallos G, Gleason NR, Zhang Y et al (2008) Activation of endogenous GABAA channels on airway smooth muscle potentiates isoproterenol-mediated relaxation. Am J Physiol Lung C 295(6):L1040–L1047. doi:10.1152/ajplung.90330.2008

    Article  CAS  Google Scholar 

  43. Spitzer WO, Suissa S, Ernst P et al (1992) The use of beta-agonists and the risk of death and near death from asthma. N Engl J Med 326(8):501–506. doi:10.1056/NEJM199202203260801

    Article  CAS  PubMed  Google Scholar 

  44. McMahon AW, Levenson MS, McEvoy BW et al (2011) Age and risks of FDA-approved long-acting beta(2)-adrenergic receptor agonists. Pediatrics 128(5):e1147–e1154. doi:10.1542/peds.2010-1720

    Article  PubMed  Google Scholar 

  45. Raghuraman G, Prabhakar NR, Kumar GK (2010) Post-translational modification of glutamic acid decarboxylase 67 by intermittent hypoxia: evidence for the involvement of dopamine D1 receptor signaling. J Neurochem 115(6):1568–1578. doi:10.1111/j.1471-4159.2010.07063.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wei J, Davis KM, Wu H et al (2004) Protein phosphorylation of human brain glutamic acid decarboxylase (GAD)65 and GAD67 and its physiological implications. Biochemistry 43(20):6182–6189. doi:10.1021/bi0496992

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. William Gerthoffer, University of South Alabama for sharing cultured human airway smooth muscle cells. This work was supported by the Stony Wold-Herbert Fund (JD, SZ), the National Institutes of Health Grants GM065281, HL122340, and GM008464 (CWE), and The Foundation for Anesthesia Education and Research (FAER) (JD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Danielsson.

Ethics declarations

Conflict of Interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danielsson, J., Zaidi, S., Kim, B. et al. Airway Epithelial Cell Release of GABA is Regulated by Protein Kinase A. Lung 194, 401–408 (2016). https://doi.org/10.1007/s00408-016-9867-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-016-9867-2

Keywords

Navigation