The novel seizure quality index for the antidepressant outcome prediction in electroconvulsive therapy: association with biomarkers in the cerebrospinal fluid

Abstract

For patients with depression treated with electroconvulsive therapy (ECT), the novel seizure quality index (SQI) can predict the risk of non-response (and non-remission)—as early as after the second ECT session—based the extent of several ictal parameters of the seizure. We aim to test several CSF markers on their ability to predict the degree of seizure quality, measured by the SQI to identify possible factors, that could explain some variability of the seizure quality. Baseline CSF levels of metabolites from the kynurenine pathway, markers of neurodegeneration (tau proteins, β-amyloids and neurogranin), elements of the innate immune system, endocannabinoids, sphingolipids, neurotrophic factors (VEGF) and Klotho were measured before ECT in patients with depression (n = 12) to identify possible correlations with the SQI by Pearson's partial correlation. Negative, linear relationships with the SQI for response were observed for CSF levels of T-tau (rpartial = − 0.69, p = 0.019), phosphatidylcholines (rpartial = − 0.52, p = 0.038) and IL-8 (rpartial = − 0.67, p = 0.047). Regarding the SQI for remission, a negative, linear relationship was noted with CSF levels of the endocannabinoid AEA (rpartial = − 0.70, p = 0.024) and CD163 (rpartial = − 0.68, p = 0.029). In sum, CSF Markers for the innate immune system, for neurodegeneration and from lipids were found to be associated with the SQI for response and remission after adjusting for age. Consistently, higher CSF levels of the markers were always associated with lower seizure quality. Based on these results, further research regarding the mechanism of seizure quality in ECT is suggested.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Axelsson J, Moller HJ, Witasp A, Qureshi AR, Carrero JJ, Heimburger O, Barany P, Alvestrand A, Lindholm B, Moestrup SK, Stenvinkel P (2006) Changes in fat mass correlate with changes in soluble scd163, a marker of mature macrophages, in patients with ckd. Am J Kidney Dis 48:916–925

    CAS  PubMed  Google Scholar 

  2. 2.

    Biedermann SV, Weber-Fahr W, Demirakca T, Tunc-Skarka N, Hoerst M, Henn F, Sartorius A, Ende G (2015) 31p RINEPT MRSI and VBM reveal alterations in brain aging associated with major depression. Magn Reson Med 73:1390–1400

    CAS  PubMed  Google Scholar 

  3. 3.

    Bindila L, Lutz B (2016) Extraction and simultaneous quantification of endocannabinoids and endocannabinoid-like lipids in biological tissues. Methods Mol Biol 1412:9–18

    CAS  PubMed  Google Scholar 

  4. 4.

    Blasco H, Veyrat-Durebex C, Bocca C, Patin F, Vourc'h P, Kouassi Nzoughet J, Lenaers G, Andres CR, Simard G, Corcia P, Reynier P (2017) Lipidomics reveals cerebrospinal-fluid signatures of als. Sci Rep 7:17652

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Bumb JM, Aksay SS, Janke C, Kranaster L, Geisel O, Gass P, Hellweg R, Sartorius A (2015) Focus on ECT seizure quality: serum BDNF as a peripheral biomarker in depressed patients. Eur Arch Psychiatry Clin Neurosci 265:227–232

    PubMed  Google Scholar 

  6. 6.

    Bundy BD, Hewer W, Andres FJ, Gass P, Sartorius A (2010) Influence of anesthetic drugs and concurrent psychiatric medication on seizure adequacy during electroconvulsive therapy. J Clin Psychiatry 71:775–777

    PubMed  Google Scholar 

  7. 7.

    Chi SH, Jeong HG, Lee S, Oh SY, Kim SH (2017) Effects of psychotropic drugs on seizure threshold during electroconvulsive therapy. Psychiatry Investig 14:647–655

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Cuellar AK, Johnson SL, Winters R (2005) Distinctions between bipolar and unipolar depression. Clin Psychol Rev 25:307–339

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Di Filippo M, Pini LA, Pelliccioli GP, Calabresi P, Sarchielli P (2008) Abnormalities in the cerebrospinal fluid levels of endocannabinoids in multiple sclerosis. J Neurol Neurosurg Psychiatry 79:1224–1229

    PubMed  Google Scholar 

  10. 10.

    Duman RS, Vaidya VA (1998) Molecular and cellular actions of chronic electroconvulsive seizures. J ECT 14:181–193

    CAS  PubMed  Google Scholar 

  11. 11.

    Folkerts H (1996) The ictal electroencephalogram as a marker for the efficacy of electroconvulsive therapy. Eur Arch Psychiatry Clin Neurosci 246:155–164

    CAS  PubMed  Google Scholar 

  12. 12.

    Gesell FK, Zoerner AA, Brauer C, Engeli S, Tsikas D, Tipold A (2013) Alterations of endocannabinoids in cerebrospinal fluid of dogs with epileptic seizure disorder. BMC Vet Res 9:262

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Giovannelli A, Limatola C, Ragozzino D, Mileo AM, Ruggieri A, Ciotti MT, Mercanti D, Santoni A, Eusebi F (1998) Cxc chemokines interleukin-8 (il-8) and growth-related gene product alpha (groalpha) modulate purkinje neuron activity in mouse cerebellum. J Neuroimmunol 92:122–132

    CAS  PubMed  Google Scholar 

  14. 14.

    Hoyer C, Kranaster L, Janke C, Sartorius A (2014) Impact of the anesthetic agents ketamine, etomidate, thiopental, and propofol on seizure parameters and seizure quality in electroconvulsive therapy: a retrospective study. Eur Arch Psychiatry Clin Neurosci 264:255–261

    PubMed  Google Scholar 

  15. 15.

    Hoyer C, Sartorius A, Aksay SS, Bumb JM, Janke C, Thiel M, Haffner D, Leifheit-Nestler M, Kranaster L (2018) Electroconvulsive therapy enhances the anti-ageing hormone klotho in the cerebrospinal fluid of geriatric patients with major depression. Eur Neuropsychopharmacol 28:428–435

    CAS  PubMed  Google Scholar 

  16. 16.

    Inta D, Lima-Ojeda JM, Lau T, Tang W, Dormann C, Sprengel R, Schloss P, Sartorius A, Meyer-Lindenberg A, Gass P (2013) Electroconvulsive therapy induces neurogenesis in frontal rat brain areas. PLoS ONE 8:e69869

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Isgren A, Jakobsson J, Palsson E, Ekman CJ, Johansson AG, Sellgren C, Blennow K, Zetterberg H, Landen M (2015) Increased cerebrospinal fluid interleukin-8 in bipolar disorder patients associated with lithium and antipsychotic treatment. Brain Behav Immun 43:198–204

    CAS  PubMed  Google Scholar 

  18. 18.

    Katona I, Freund TF (2008) Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat Med 14:923–930

    CAS  PubMed  Google Scholar 

  19. 19.

    Kranaster L, Aksay SS, Bumb JM, Hoyer C, Jennen-Steinmetz C, Sartorius A (2018) A novel seizure quality index based on ictal parameters for optimizing clinical decision making in electroconvulsive therapy. Part 1: Development. Eur Arch Psychiatry Clin Neurosci

  20. 20.

    Kranaster L, Aksay SS, Bumb JM, Janke C, Alonso A, Hoyer C, Zerr I, Schmitz M, Hausner L, Frolich L, Sartorius A (2016) Electroconvulsive therapy selectively enhances amyloid beta 1–42 in the cerebrospinal fluid of patients with major depression: a prospective pilot study. Eur Neuropsychopharmacol 26:1877–1884

    CAS  PubMed  Google Scholar 

  21. 21.

    Kranaster L, Blennow K, Zetterberg H, Sartorius A (2017) Electroconvulsive therapy does not alter the synaptic protein neurogranin in the cerebrospinal fluid of patients with major depression. J Neural Transm (Vienna) 124:1641–1645

    CAS  Google Scholar 

  22. 22.

    Kranaster L, Blennow K, Zetterberg H, Sartorius A (2019) Reduced vascular endothelial growth factor levels in the cerebrospinal fluid in patients with treatment resistant major depression and the effects of electroconvulsive therapy—a pilot study. J Affect Disord 253:449–453

    CAS  PubMed  Google Scholar 

  23. 23.

    Kranaster L, Hellweg R, Sartorius A (2019) Association between the novel seizure quality index for the outcome prediction in electroconvulsive therapy and brain-derived neurotrophic factor serum levels. Neurosci Lett 704:164–168

    CAS  PubMed  Google Scholar 

  24. 24.

    Kranaster L, Hoyer C, Aksay SS, Bumb JM, Leweke FM, Janke C, Thiel M, Lutz B, Bindila L, Sartorius A (2017) Electroconvulsive therapy enhances endocannabinoids in the cerebrospinal fluid of patients with major depression: a preliminary prospective study. Eur Arch Psychiatry Clin Neurosci

  25. 25.

    Kranaster L, Hoyer C, Aksay SS, Bumb JM, Leweke FM, Janke C, Thiel M, Lutz B, Bindila L, Sartorius A (2017) Electroconvulsive therapy enhances endocannabinoids in the cerebrospinal fluid of patients with major depression: A preliminary prospective study. Eur Arch Psychiatry Clin Neurosci 267:781–786

    PubMed  Google Scholar 

  26. 26.

    Kranaster L, Hoyer C, Aksay SS, Bumb JM, Muller N, Zill P, Schwarz MJ, Moll N, Lutz B, Bindila L, Zerr I, Schmitz M, Blennow K, Zetterberg H, Haffner D, Leifheit-Nestler M, Ozbalci C, Janke C, Thiel M, Sartorius A (2019) Biomarkers for antidepressant efficacy of electroconvulsive therapy: an exploratory cerebrospinal fluid study. Neuropsychobiology 77:13–22

    PubMed  Google Scholar 

  27. 27.

    Kranaster L, Hoyer C, Aksay SS, Bumb JM, Muller N, Zill P, Schwarz MJ, Sartorius A (2017) Antidepressant efficacy of electroconvulsive therapy is associated with a reduction of the innate cellular immune activity in the cerebrospinal fluid in patients with depression. World J Biol Psychiatry 1–11

  28. 28.

    Kranaster L, Hoyer C, Aksay SS, Bumb JM, Muller N, Zill P, Schwarz MJ, Sartorius A (2018) Antidepressant efficacy of electroconvulsive therapy is associated with a reduction of the innate cellular immune activity in the cerebrospinal fluid in patients with depression. World J Biol Psychiatry 19:379–389

    PubMed  Google Scholar 

  29. 29.

    Kranaster L, Jennen-Steinmetz C, Sartorius A (2018) A novel seizure quality index based on ictal parameters for optimizing clinical decision-making in electroconvulsive therapy. Part 2: Validation. Eur Arch Psychiatry Clin Neurosci

  30. 30.

    Kranaster L, Kammerer-Ciernioch J, Hoyer C, Sartorius A (2011) Clinically favourable effects of ketamine as an anaesthetic for electroconvulsive therapy: a retrospective study. Eur Arch Psychiatry Clin Neurosci 261:575–582

    PubMed  Google Scholar 

  31. 31.

    Krystal AD (1998) The clinical utility of ictal eeg seizure adequacy models. Psychiatr Ann 28:30–35

    Google Scholar 

  32. 32.

    Krystal AD, Weiner RD, Coffey CE (1995) The ictal eeg as a marker of adequate stimulus intensity with unilateral ect. J Neuropsychiatry Clin Neurosci 7:295–303

    CAS  PubMed  Google Scholar 

  33. 33.

    Kvartsberg H, Duits FH, Ingelsson M, Andreasen N, Ohrfelt A, Andersson K, Brinkmalm G, Lannfelt L, Minthon L, Hansson O, Andreasson U, Teunissen CE, Scheltens P, Van der Flier WM, Zetterberg H, Portelius E, Blennow K (2015) Cerebrospinal fluid levels of the synaptic protein neurogranin correlates with cognitive decline in prodromal alzheimer's disease. Alzheimer's Dementia J Alzheimer's Assoc 11:1180–1190

    Google Scholar 

  34. 34.

    Larsen WA, McCleary SJ (1972) The use of partial residual plots in regression analysis. Technometrics 14:781–790

    Google Scholar 

  35. 35.

    Mindt S, Neumaier M, Hoyer C, Sartorius A, Kranaster L (2019) Cytokine-mediated cellular immune activation in electroconvulsive therapy: a csf study in patients with treatment-resistant depression. World J Biol Psychiatry 1–9

  36. 36.

    Minelli A, Abate M, Zampieri E, Gainelli G, Trabucchi L, Segala M, Sartori R, Gennarelli M, Conca A, Bortolomasi M (2016) Seizure adequacy markers and the prediction of electroconvulsive therapy response. J ECT 32:88–92

    PubMed  Google Scholar 

  37. 37.

    Moller HJ (2012) Soluble cd163. Scand J Clin Lab Invest 72:1–13

    CAS  PubMed  Google Scholar 

  38. 38.

    Murphy PM, Baggiolini M, Charo IF, Hebert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, Power CA (2000) International union of pharmacology. Xxii Nomenclature for chemokine receptors. Pharmacol Rev 52:145–176

    CAS  PubMed  Google Scholar 

  39. 39.

    Nibuya M, Morinobu S, Duman RS (1995) Regulation of bdnf and trkb mrna in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 15:7539–7547

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Nierenberg AA, DeCecco LM (2001) Definitions of antidepressant treatment response, remission, nonresponse, partial response, and other relevant outcomes: A focus on treatment-resistant depression. J Clin Psychiatry 62(Suppl 16):5–9

    CAS  PubMed  Google Scholar 

  41. 41.

    Ogden TL (2010) Handling results below the level of detection. Ann Occup Hyg 54:255–256

    CAS  PubMed  Google Scholar 

  42. 42.

    Ozbalci C, Sachsenheimer T, Brugger B (2013) Quantitative analysis of cellular lipids by nano-electrospray ionization mass spectrometry. Methods Mol Biol 1033:3–20

    PubMed  Google Scholar 

  43. 43.

    Perera TD, Luber B, Nobler MS, Prudic J, Anderson C, Sackeim HA (2004) Seizure expression during electroconvulsive therapy: relationships with clinical outcome and cognitive side effects. Neuropsychopharmacology 29:813–825

    PubMed  Google Scholar 

  44. 44.

    Petrides G, Braga RJ, Fink M, Mueller M, Knapp R, Husain M, Rummans T, Bailine S, Malur C, O'Connor K, Kellner C, Group C (2009) Seizure threshold in a large sample: Implications for stimulus dosing strategies in bilateral electroconvulsive therapy: a report from core. J ECT 25:232–237

    Google Scholar 

  45. 45.

    Petrides G, Fink M (1996) The "half-age" stimulation strategy for ect dosing. Convuls Ther 12:138–146

    CAS  PubMed  Google Scholar 

  46. 46.

    Posse de Chaves E, Vance DE, Campenot RB, Vance JE (1995) Alkylphosphocholines inhibit choline uptake and phosphatidylcholine biosynthesis in rat sympathetic neurons and impair axonal extension. Biochem J 312(Pt 2):411–417

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Posse de Chaves E, Vance DE, Campenot RB, Vance JE (1995) Axonal synthesis of phosphatidylcholine is required for normal axonal growth in rat sympathetic neurons. J Cell Biol 128:913–918

    CAS  PubMed  Google Scholar 

  48. 48.

    Romigi A, Bari M, Placidi F, Marciani MG, Malaponti M, Torelli F, Izzi F, Prosperetti C, Zannino S, Corte F, Chiaramonte C, Maccarrone M (2010) Cerebrospinal fluid levels of the endocannabinoid anandamide are reduced in patients with untreated newly diagnosed temporal lobe epilepsy. Epilepsia 51:768–772

    CAS  PubMed  Google Scholar 

  49. 49.

    Sartorius A, Neumann-Haefelin C, Vollmayr B, Hoehn M, Henn FA (2003) Choline rise in the rat hippocampus induced by electroconvulsive shock treatment. Biol Psychiat 53:620–623

    CAS  PubMed  Google Scholar 

  50. 50.

    Sartorius A, Schloss P, Vollmayr B, Ende G, Neumann-Haefelin C, Hoehn M, Henn FA (2006) Correlation between mr-spectroscopic rat hippocampal choline levels and phospholipase a2. World J Biol Psychiatry 7:246–250

    PubMed  Google Scholar 

  51. 51.

    Schmitt A, Maras A, Petroianu G, Braus DF, Scheuer L, Gattaz WF (2001) Effects of antipsychotic treatment on membrane phospholipid metabolism in schizophrenia. J Neural Transm (Vienna) 108:1081–1091

    CAS  Google Scholar 

  52. 52.

    Semple BD, Kossmann T, Morganti-Kossmann MC (2010) Role of chemokines in cns health and pathology: A focus on the ccl2/ccr2 and cxcl8/cxcr2 networks. J Cereb Blood Flow Metab 30:459–473

    CAS  PubMed  Google Scholar 

  53. 53.

    Shelton RC, Claiborne J, Sidoryk-Wegrzynowicz M, Reddy R, Aschner M, Lewis DA, Mirnics K (2011) Altered expression of genes involved in inflammation and apoptosis in frontal cortex in major depression. Mol Psychiatry 16:751–762

    CAS  PubMed  Google Scholar 

  54. 54.

    Stilund M, Reuschlein AK, Christensen T, Moller HJ, Rasmussen PV, Petersen T (2014) Soluble cd163 as a marker of macrophage activity in newly diagnosed patients with multiple sclerosis. PLoS ONE 9:e98588

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Stuart MJ, Baune BT (2014) Chemokines and chemokine receptors in mood disorders, schizophrenia, and cognitive impairment: a systematic review of biomarker studies. Neurosci Biobehav Rev 42:93–115

    CAS  PubMed  Google Scholar 

  56. 56.

    Wallace MJ, Martin BR, DeLorenzo RJ (2002) Evidence for a physiological role of endocannabinoids in the modulation of seizure threshold and severity. Eur J Pharmacol 452:295–301

    CAS  PubMed  Google Scholar 

  57. 57.

    Zetterberg H (2017) Review: Tau in biofluids—relation to pathology, imaging and clinical features. Neuropathol Appl Neurobiol 43:194–199

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

LK received support by the German Research Foundation (DFG-Grant no. KR 4689/3-1).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Laura Kranaster.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kranaster, L., Hoyer, C., Mindt, S. et al. The novel seizure quality index for the antidepressant outcome prediction in electroconvulsive therapy: association with biomarkers in the cerebrospinal fluid. Eur Arch Psychiatry Clin Neurosci 270, 911–919 (2020). https://doi.org/10.1007/s00406-019-01086-x

Download citation

Keywords

  • Electroconvulsive therapy
  • Depression
  • Outcome
  • Prediction
  • Cerebrospinal fluid