Advertisement

Reduced oligodendrocyte density in layer 5 of the prefrontal cortex in schizophrenia

  • Natalya S. Kolomeets
  • Natalya A. Uranova
Original Paper
  • 106 Downloads

Abstract

Neuroimaging and post-mortem studies have implicated altered myelin integrity and oligodendrocyte abnormalities in the dysfunction of neuronal network in schizophrenia, including the prefrontal cortex, Brodmann area (BA) 10. Pyramidal neurons in layer 5 of BA10 are the important link of reciprocal frontal cortical—basal ganglia—thalamic circuits altered in schizophrenia. Previously, we found ultrastructural dystrophic and degenerative alterations of oligodendrocytes in layer 5 of BA10 in schizophrenia. The aim of the study was to estimate the numerical density (Nv) of oligodendrocytes in layer 5 of BA10 in schizophrenia as compared to normal controls. 17 chronic schizophrenia subjects and 22 healthy matched controls were studied in Nissl-stained sections using optical disector method. Group differences were analyzed using ANCOVA followed by post hoc Duncan’s test. The Nv of oligodendrocytes was significantly lower (− 32%, p < 0.001) in the schizophrenia group as compared to the control group. Young controls (age < 50 years old) showed significantly higher Nv of oligodendrocytes as compared to elderly controls (age > 50 years old). Young and elderly schizophrenia subgroups did not differ significantly. Both control subgroups have significantly higher Nv of oligodendrocytes as compared to the schizophrenia subgroups. Decreased Nv of oligodendrocytes found in layer 5 of BA10 may be the result of dystrophic and destructive alterations and/or disrupted development of oligodendrocytes in schizophrenia.

Keywords

Prefrontal cortex BA10 Schizophrenia Oligodendrocyte density Optical disector 

Notes

Acknowledgements

The authors would like to thank T.Makeeva for her excellent technical assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB, Starkey M, Webster MJ, Yolken RH, Bahn S (2003) Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 362(9386):798–805.  https://doi.org/10.1016/S0140-6736(03)14289-4 CrossRefPubMedGoogle Scholar
  2. 2.
    Dwork AJ, Mancevski B, Rosoklija G (2007) White matter and cognitive function in schizophrenia. Int J Neuropsychopharmacol 10(4):513–536.  https://doi.org/10.1017/S1461145707007638 CrossRefPubMedGoogle Scholar
  3. 3.
    Haroutunian V, Katsel P, Roussos P, Davis KL, Altshuler LL, Bartzokis G (2014) Myelination, oligodendrocytes, and serious mental illness. Glia 62(11):1856–1877.  https://doi.org/10.1002/glia.22716 CrossRefPubMedGoogle Scholar
  4. 4.
    Cassoli JS, Guest PC, Malchow B, Schmitt A, Falkai P, Martins-de-Souz D (2015) Disturbed macro-connectivity in schizophrenia linked to oligodendrocyte dysfunction: from structural findings to molecules. NPJ Schizophr 1:15034.  https://doi.org/10.1038/npjschz.2015.34 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Grydeland H, Walhovd KB, Tamnes CK, Westlye LT, Fjell AM (2013) Intracortical myelin links with performance variability across the human lifespan: results from T1- and T2-weighted MRI myelin mapping and diffusion tensor imaging. J Neurosci 33(47):18618–18630.  https://doi.org/10.1523/JNEUROSCI.2811-13.2013 CrossRefPubMedGoogle Scholar
  6. 6.
    Grydeland H, Westlye LT, Walhovd KB, Fjell AM (2016) Intracortical posterior cingulate myelin content relates to error processing: results from T1- and T2-weighted MRI myelin mapping and electrophysiology in healthy adults. Cereb Cortex 26(6):2402–2410.  https://doi.org/10.1093/cercor/bhv065 CrossRefPubMedGoogle Scholar
  7. 7.
    Bartzokis G, Altshuler L (2005) Reduced intracortical myelination in schizophrenia. Am J Psychiatry 162:1229–1230.  https://doi.org/10.1176/appi.ajp.162.6.1229 CrossRefPubMedGoogle Scholar
  8. 8.
    Bartzokis G, Lu PH, Raven EP, Amar CP, Detore NR, Couvrette AJ, JMintz J, Ventura J, Casaus LR, Luo JS, Subotnik KL, Nuechterlein KH (2012) Impact on intracortical myelination trajectory of long acting injection versus oral risperidone in first-episode schizophrenia. Schizophr Res 140(1–3):122–128.  https://doi.org/10.1016/j.schres.2012.06.036 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bartzokis G (2012) Neuroglialpharmacology: myelination as a shared mechanism of action of psychotropic treatments. Neuropharmacology 62(7): 2137–2153.  https://doi.org/10.1016/j.neuropharm.2012.01.015 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lake EMR, Stefler EA, Rowley CD, Sehmbi M, Minuzzi L, Frey BN, Bock NA (2016) Altered intracortical myelin staining in the dorsolateral prefrontal cortex in severe mental illness. Eur Arch Psychiatry Clin Neurosci 267(5):369–376. https://doi.org/10.1007/s00406-016-0730-5 CrossRefPubMedGoogle Scholar
  11. 11.
    Flynn SW, Lang DJ, Mackay AL, Goghari V, Vavasour IM, Whittall KP, Smith GN, Arango V, Mann JJ, Dwork AJ, Falkai P, Honer WG (2003) Abnormalities of myelination in schizophrenia detected in vivo with MRI, and post-mortem with analysis of oligodendrocyte proteins. Mol Psychiatry 8(9):811–820.  https://doi.org/10.1038/sj.mp.4001337 CrossRefPubMedGoogle Scholar
  12. 12.
    Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD, Haroutunian V, Fienberg AA (2001) Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. PNAS 98:4746–4751.  https://doi.org/10.1073/pnas.081071198 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sugai T, Kawamura M, Iritani S, Araki K, Makifuchi T, Imai C, Nakamura R, Kakita A, Takahashi H, Nawa H (2004) Prefrontal abnormality of schizophrenia revealed by DNA microarray impact on glial and neurotrophic gene expression. Ann NY Acad Sci 1025:84–91.  https://doi.org/10.1196/annals.1316.011 CrossRefPubMedGoogle Scholar
  14. 14.
    Barbas H, Zikopoulos B, Timbie C (2011) Sensory pathways and emotional context for action in primate prefrontal cortex. Biol Psychiatry 69:1133–1139.  https://doi.org/10.1016/j.biopsych.2010.08.008 CrossRefPubMedGoogle Scholar
  15. 15.
    Behrens TEJ, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CAM, Boulby PA, Barker GJ, Sillery EL, Sheehan K, Ciccarelli O, Thompson AJ, Brady JM, Matthews PM (2003) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6(7):750–757.  https://doi.org/10.1038/nn1075 CrossRefPubMedGoogle Scholar
  16. 16.
    McFarland NR, Haber SN (2002) Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas. J Neurosci 22(18):8117–8132PubMedGoogle Scholar
  17. 17.
    Marenco S, Stein JL, Savostyanova AA, Sambataro F, Tan HY, Goldman AL, Verchinski BA, Barnett AS, Dickinson D, Apud JA, Callicott JH, Meyer-Lindenberg A, Weinberger DR (2012) Investigation of anatomical thalamo—cortical connectivity and FMRI activation in schizophrenia. Neuropsychopharmacology 37(2):499–507.  https://doi.org/10.1038/npp.2011.215 CrossRefPubMedGoogle Scholar
  18. 18.
    Buchmann A, Dentico D, Peterson MJ, Riedner BA, Sarasso S, Massimini M, Tononi G, Ferrarelli F (2014) Reduced mediodorsal thalamic volume and prefrontal cortical spindle activity in schizophrenia. Neuroimage 102(02):540–547.  https://doi.org/10.1016/j.neuroimage.2014.08.017 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Giraldo -Chica M, Woodward ND (2017) Review of thalamocortical resting-state fMRI studies in schizophrenia. Schizophr Res 180:58–63.  https://doi.org/10.1016/j.schres.2016.08.005 CrossRefPubMedGoogle Scholar
  20. 20.
    Camchong J, Dyckman KA, Chapman CE, Yanasak NE, McDowell JE (2006) Basal ganglia- thalamocortical circuitry disruptions in schizophrenia during delayed response tasks. Biol Psychiatry 60:235–241.  https://doi.org/10.1016/j.biopsych.2005.11.014 CrossRefPubMedGoogle Scholar
  21. 21.
    Vostrikov VM, Uranova NA, Rakhmanova VI, Orlovskaia DD (2004) Lowered oligodendroglial cell density in the prefrontal cortex in schizophrenia. Zh Nevrol Psikhiatr Im SS Korsakova 104(1):47–51 (Russian) Google Scholar
  22. 22.
    Vostrikov VM, Uranova NA, Orlovskaya DD (2007) Deficit of perineuronal oligodendrocytes in the prefrontal cortex in schizophrenia and mood disorders. Schizophr Res 94(1–3):273–280.  https://doi.org/10.1016/j.schres.2007.04.014 CrossRefPubMedGoogle Scholar
  23. 23.
    Uranova N, Orlovskaya D, Vikhreva O, Zimina I, Kolomeets N, Vostrikov V, Rachmanova V (2001) Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull 55(5):597–610.  https://doi.org/10.1016/S0920-9964(03)00181-6 CrossRefPubMedGoogle Scholar
  24. 24.
    Uranova NA, Vikhreva OV, Rachmanova VI, Orlovskaya DD (2011) Ultrastructural alterations of myelinated fibers and oligodendrocytes in the prefrontal cortex in schizophrenia: a postmortem morphometric study. Schizophr Res Treatment 2011:325789.  https://doi.org/10.1155/2011/325789 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Davis JM (1974) Dose equivalent of the antipsychotic drugs. J Psychiatr Res 11:65–69CrossRefPubMedGoogle Scholar
  26. 26.
    Rey M, Schulz P, Costa C, Dick P, Tissot R (1989) Guidelines for the dosage of neuroleptics. 1: chlorpromazine equivalents of orally administered neuroleptics. Int Clin Psychopharmacol 4(2):95–104CrossRefPubMedGoogle Scholar
  27. 27.
    Cornwall PL, Hassanyen F, Horn C (1996) High-dose antipsychotic medication.Improving clinical practice in a psychiatric special (intensive) care unit. Psychiatry Bull 20:676–680CrossRefGoogle Scholar
  28. 28.
    Zilles K (2004) Architecture of the human cerebral cortex. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 997–1055CrossRefGoogle Scholar
  29. 29.
    Nieuwenhuys R, Voogd j, Huijzen CH (1981) The human central nervous system. A synopsis and atlas, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  30. 30.
    Gundersen HJ, Bendtsen TF, Korbo L, Marcussen N, Møller A, Nielsen K, Nyengaard JR, Pakkenberg B, Sørensen FB, Vesterby A et al (1988) Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. APMIS 96(5):379–394CrossRefPubMedGoogle Scholar
  31. 31.
    Ongur D, Ferry AT, Prices JL (2003) Architectonic subdivision of the human orbital and medial prefrontal cortex. J Comp Neurology 460:425–449.  https://doi.org/10.1002/cne.10609 CrossRefGoogle Scholar
  32. 32.
    Uranova NA, Vostrikov VM, Orlovskaya DD, Rachmanova VI (2004) Oligodendroglial density in the prefrontal cortex area 9 in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium. Schizophr Res 67(2–3):269–275.  https://doi.org/10.1016/S0920-9964(03)00181-6 CrossRefPubMedGoogle Scholar
  33. 33.
    Bartzokis G (2004) Quadratic trajectories of brain myelin content: unifying construct for neuropsychiatric disorders. Neurobiol Aging 25:49–62.  https://doi.org/10.1016/j.neurobiolaging.2003.08.001 CrossRefGoogle Scholar
  34. 34.
    Vostrikov VM, Kolomeets NS, Uranova NA (2013) Reduced oligodendroglial density in the inferior parietal lobule and lack of insight in schizophrenia. Eur J Psychiatry 27(2):111–121.  https://doi.org/10.4321/S0213-61632013000200004 CrossRefGoogle Scholar
  35. 35.
    Uranova NA, Vostrikov VM, Kolomeets NS (2015) Oligodendrocyte abnormalities in layer 5 in the inferior parietal lobule are associated with lack of insight in schizophrenia: a postmortem morphometric study. Eur J Psychiatry 29(3):215–222.  https://doi.org/10.4321/S0213-61632015000300006 CrossRefGoogle Scholar
  36. 36.
    Stark AK, Uylings HB, Sanz-Arigita E, Pakkenberg B (2004) Glial cell loss in the anterior cingulate cortex, a subregion of the prefrontal cortex, in subjects with schizophrenia. Am J Psychiatry 161:882–888.  https://doi.org/10.1176/appi.ajp.161.5.882 CrossRefPubMedGoogle Scholar
  37. 37.
    Schmitt A, Steyskal C, Bernstein HG, Parlapani E, Schaeffer EL, Gattaz WF, Bogerts B, Schmitz C, Falkai P (2009) Stereologic investigation of the posterior part of the hippocampus in schizophrenia. Acta Neuropathol 117(4):395–407.  https://doi.org/10.1007/s00401-008-0430-y CrossRefPubMedGoogle Scholar
  38. 38.
    Falkai P, Malchow B, Wetzestein K, Nowastowski V, Bernstein H-G, Steiner J, Schneider-Axmann T, Hasan A, Bogerts B, Schmitz C, Schmitt A (2016) Decreased oligodendrocyte and neuron number in anterior hippocampal areas and the entire hippocampus in schizophrenia: a stereological post-mortem study. Schizophr Bull 42(suppl1):S4–S12.  https://doi.org/10.1093/schbul/sbv157 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Falkai P, Steiner J, Malchow B, Shariati J, Knaus A, Bernstein H-G, Schneider-Axmann T, Kraus T, Hasan A, Bogerts B, Schmitt A (2016) Oligodendrocyte and interneuron density in hippocampal subfields in schizophrenia and association of oligodendrocyte number with cognitive deficits. Front Cell Neurosci 10:78.  https://doi.org/10.3389/fncel.2016.00078 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Segal D, Schmitz C, Hof PR (2009) Spatial distribution and density of oligodendrocytes in the cingulum bundle are unaltered in schizophrenia. Acta Neuropathol 117:385–394.  https://doi.org/10.1007/s00401-008-0379-x CrossRefPubMedGoogle Scholar
  41. 41.
    Hof PR, Haroutunian V, Friedrich VL Jr, Byne W, Buitron C, Perl DP, Davis KL (2003) Loss and altered spatial distribution of oligodendrocytes in the superior frontal gyrus in schizophrenia. Biol Psychiatry 53:1075–1085.  https://doi.org/10.1016/S0006-3223(03)00237-3 CrossRefPubMedGoogle Scholar
  42. 42.
    Benes FM, McSparren J, Bird ED, SanGiovanni JP, Vincent SL (1991) Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch Gen Psychiatry 48:996–1001CrossRefPubMedGoogle Scholar
  43. 43.
    Zhu X, Hill RA, Dietrich D, Komitova M, Suzuki R, Nishiyama A (2011) Age-dependent fate and lineage restriction of single NG2 cells. Development 38(4):745–753.  https://doi.org/10.1242/dev.047951 CrossRefGoogle Scholar
  44. 44.
    Geha S, Pallud J, Junier MP, Devaux B, Leonard N, Chassoux F, Chneiweiss H, Daumas-Duport C, Varlet P (2010) NG2+/Olig2+ cells are the major cycle-related cell population of the adult human normal brain. Brain Pathol 20(2):399–411.  https://doi.org/10.1111/j.1750-3639.2009.00295.x CrossRefPubMedGoogle Scholar
  45. 45.
    Mauney SA, Pietersen CY, Sonntag KC, Woo TU (2015) Differentiation of oligodendrocyte precursors is impaired in the prefrontal cortex in schizophrenia. Schizophr Res 169(1–3):374–380.  https://doi.org/10.1016/j.schres.2015.10.042 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Katsel P, Davis KL, Li C, Tan W, Greenstein E, Kleiner Hoffman LB, Haroutunian V (2008) Abnormal indices of cell cycle activity in schizophrenia and their potential association with oligodendrocytes. Neuropsychopharmacology 33:2993–3009.  https://doi.org/10.1038/npp.2008.19 CrossRefPubMedGoogle Scholar
  47. 47.
    Kolomeets NS, Vostrikov VM, Uranova NA (2013) Abnormalities in oligodendrocyte clusters in the inferior parietal cortex in schizophrenia are associated with insight. Eur J Psychiat 27(4):248–258.  https://doi.org/10.4321/S0213-61632013000400003 CrossRefGoogle Scholar
  48. 48.
    Kolomeets NS, Uranova NA (2015) Abnormalities of oligodendrocyte clusters in the inferior parietal cortex in schizophrenia: effect of onset age. Psykhiatria 3(67):52–57 (Russian) Google Scholar
  49. 49.
    Soreq L, Rose J, Soreq E, Hardy J, Trabzuni D, Cookson MR, Smith C, Ryten M, Patani R, Ule J (2017) Major shifts in glial regional identity are a transcriptional hallmark of human brain aging. Cell Rep 18(2):557–570.  https://doi.org/10.1016/j.celrep.2016.12.011 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Fabricius K, Jacobsen JS, Pakkenberg B (2013) Effect of age on neocortical brain cells in 90+ year old human females—a cell counting study. Neurobiol Aging 34:91–99.  https://doi.org/10.1016/j.neurobiolaging.2012.06.009 CrossRefPubMedGoogle Scholar
  51. 51.
    Pelvig DP, Pakkenberg H, Stark AK, Pakkenberg B (2008) Neocortical glial cell numbers in human brains. Neurobiol Aging 29:1754–1762.  https://doi.org/10.1016/j.neurobiolaging.2007.04.013 CrossRefPubMedGoogle Scholar
  52. 52.
    Vostrikov V, Uranova N (2011) Age-related increase in the number of oligodendrocytes is dysregulated in schizophrenia and mood disorders. Schizophr Res Treat 2011:174689.  https://doi.org/10.1155/2011/174689 Google Scholar
  53. 53.
    Rajkowska G, Miguel-Hidalgo JJ (2007) Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets 6(3):219–233CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Koutsouleris N, Davatzikos C, Borgwardt S, Gaser C, Ronald Bottlender R, Frodl T, Falkai P, Riecher-Rössler A, Möller H, Reiser M, Pantelis C, Meisenzahl E (2014) Accelerated brain aging in schizophrenia and beyond: a neuroanatomical marker of psychiatric disorders. Schizophr Bull 40(5):1140–1153.  https://doi.org/10.1093/schbul/sbt142 CrossRefPubMedGoogle Scholar
  55. 55.
    Konopaske GT, Dorph-Petersen KA, Sweet RA, Pierri JN, Zhang W, Sampson AR, Lewis DA (2008) Effect of chronic antipsychotic exposure on astrocyte and oligodendrocyte numbers in macaque monkeys. Biol Psychiatry 63(8):759–765.  https://doi.org/10.1016/j.biopsych.2007.08.018 CrossRefPubMedGoogle Scholar
  56. 56.
    Selemon LD, Lidow MS, Goldman-Rakic PS (1999) Increased volume and glial density in primate prefrontal cortex associated with chronic antipsychotic drug exposure. Biol Psychiatry 46:161–172CrossRefPubMedGoogle Scholar
  57. 57.
    Steiner J, Sarnyai Z, Westphal S, Gos T, Bernstein HG, Bogerts B, Keilhoff G (2011) Protective effects of haloperidol and clozapine on energy-deprived OLN-93 oligodendrocytes. Eur Arch Psychiatry Clin Neurosci 261(7):477–482.  https://doi.org/10.1007/s00406-011-0197-3 CrossRefPubMedGoogle Scholar
  58. 58.
    Bi X, Zhang Y, Yan B, Fang S, He J, Zhang D, Zhang Z, Kong J, Tan Q, Li XM (2012) Quetiapine prevents oligodendrocyte and myelin loss and promotes maturation of oligodendrocyte progenitors in the hippocampus of global cerebral ischemia mice. J Neurochem 123(1):14–20.  https://doi.org/10.1111/j.1471-4159.2012.07883.x CrossRefPubMedGoogle Scholar
  59. 59.
    Wang H, Xu H, Niu J, Mei F, Li X, Kong J, Cai W, Xiao L (2010) Haloperidol activates quiescent oligodendroglia precursor cells in the adult mouse brain. Schizophr Res 119(1–3):164–174.  https://doi.org/10.1016/j.schres.2010.02.1068 CrossRefPubMedGoogle Scholar
  60. 60.
    Fang F, Zhang H, Zhang Y, Xu H, Huang Q, Adilijiang A, Wang J, Zhang Z, Zhang D, Tan Q, He J, Kong L, Liu Y, Li XM (2013) Antipsychotics promote the differentiation of oligodendrocyte progenitor cells by regulating oligodendrocyte lineage transcription factors 1 and 2. Life Sci 93(12–14):429–434.  https://doi.org/10.1016/j.lfs.2013.08.004 CrossRefPubMedGoogle Scholar
  61. 61.
    Yamauchi T, Tatsumi K, Makinodan M, Kimoto S, Toritsuka M, Okuda H, Kishimoto T, Wanaka A (2010) Olanzapine increases cell mitotic activity and oligodendrocyte-lineage cells in the hypothalamus. Neurochem Int 57(5):565–571.  https://doi.org/10.1016/j.neuint.2010.07.003 CrossRefPubMedGoogle Scholar
  62. 62.
    Bartzokis G, Lu PH, Stewart SB, Oluwadara B, Lucas AJ, Pantages J, Pratt E, Sherin JE, Altshuler LL, Mintz J, Gitlin MJ, Subotnik KL, Nuechterlein KH (2009) In vivo evidence of differential impact of typical and atypical antipsychotics on intracortical myelin in adults with schizophrenia. Schizophr Res 113:322–331.  https://doi.org/10.1016/j.schres.2009.06.014 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Parellada M, Boada L, Fraguas D, Reig S, Castro-Fornieles J, Moreno D, Gonzalez-Pinto A, Otero S, Rapado-Castro M, Grael M, Baeza I, Arango C (2011) Trait and state attributes of insight in first episodes of early-onset schizophrenia and other psychoses: a 2-year longitudinal study. Schizophr Bull 37(1):38–51.  https://doi.org/10.1093/schbul/sbq109 CrossRefPubMedGoogle Scholar
  64. 64.
    Shad MU, Tamminga CA, Cullum M, Haas GL, Keshavan MS (2006) Insight and frontal cortical function in schizophrenia: a review. Schizophr Res 86 (1–3):54–70.  https://doi.org/10.1016/j.schres.2006.06.006 CrossRefPubMedGoogle Scholar
  65. 65.
    Raij TT, Riekki TJ, Hari R (2012) Association of poor insight in schizophrenia with structure and function of cortical midline structures and frontopolar cortex. Schizophr Res 139(1–3):27–32.  https://doi.org/10.1016/j.schres.2012.05.011 CrossRefPubMedGoogle Scholar
  66. 66.
    Harrington L, Langdon R, Siegert RJ, McClure J (2005) Schizophrenia, theory of mind, and persecutory delusions. Cogn Neuropsychiatry 10(2):87–104.  https://doi.org/10.1080/13546800344000327 CrossRefPubMedGoogle Scholar
  67. 67.
    Greig TC, Bryson GJ, Bell MD (2004). Theory of mind performance in schizophrenia: diagnostic, symptom, and neuropsychological correlates. J Nerv Ment Dis 192(1):12–18.  https://doi.org/10.1097/01.nmd.0000105995.67947.fc CrossRefPubMedGoogle Scholar
  68. 68.
    Black JE, Kodish IM, Grossman AW, Klintsova AY, Orlovskaya D, Vostrikov V, Uranova N, Greenough WT (2004) Pathology of layer V pyramidal neurons in the prefrontal cortex of patients with schizophrenia. Am J Psychiatry 161(4):742–744.  https://doi.org/10.1176/appi.ajp.161.4.742 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Clinical NeuropathologyMental Health Research CentreMoscowRussia

Personalised recommendations