Human glutathione peroxidase codon 198 variant increases nasopharyngeal carcinoma risk and progression

Abstract

Purpose

Glutathione peroxidase 1 (GPx-1) is a selenium-dependent detoxifying enzyme involved in the protection of cells against oxidative damage. Some genetic association studies reported significant associations between GPx-1 Pro198Leu variant and carcinogenesis across different populations; however, the impact of this variant on nasopharyngeal carcinoma (NPC) has not been explored. Therefore, the present study was planned to evaluate the potential involvement of the GPx-1 Pro198Leu variant and plasma GPx activity in the risk of developing NPC in a Tunisian population.

Methods

The GPx-1 Pro198Leu genotype was determined in 327 NPC patients and 150 healthy controls by the RFLP-PCR analysis. The correlation between the GPx-1 variant and the clinicopathological parameters was examined. GPx activity was assessed in the plasma of 119 NPC patients and 58 healthy control subjects and according to GPx-1 genotypes and clinicopathological characteristics of NPC patients.

Results

A significant association was found between GPx-1 Pro198Leu variant and NPC risk in a Tunisian population. The allelic frequencies of Pro and Leu alleles were 32% versus 68% and 41% versus 59% in NPC cases and controls, respectively. Thus, the minor 198 Leu allele increased significantly in NPC patients and appeared as a potential risk factor for NPC occurrence (OR = 1.48, CI 95% = 1.14–1.91, p = 0.002). The plasma GPx activity was significantly higher in NPC patients than in controls (p = 0.03). According to the clinicopathological characteristics of NPC patients, GPx activity decreased significantly in patients with lymph node metastasis (p = 0.004).

Conclusion

This is the first study showing a strong association between GPx-1 Pro198Leu genetic variant and NPC risk. GPx-1 Pro198Leu variant increased the development of regional lymph node metastasis. Plasma GPx activity was higher in NPC patients. Thus, GPx-1 gene could be considered as a determinant factor influencing NPC risk and progression.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Khaali W, Moumad K, Ben Driss EK et al (2016) No association between TGF-β1 polymorphisms and risk of nasopharyngeal carcinoma in a large North African case control study. BMC Med Genet 17(1):72

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  2. 2.

    Loong HH, Ma BB, Chan AT (2008) Update on the management and therapeutic monitoring of advanced nasopharyngeal cancer. HematolOncolClin North Am 22(6):1267–1278

    Article  Google Scholar 

  3. 3.

    Afqir S, Ismaili N, Errihani H (2009) Concurrent chemoradiotherapy in the management of advanced nasopharyngeal carcinoma: current status. J Cancer Res Ther 5(1):3–7

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Yun M, Bai HY, Zhang JX et al (2015) ULK1: a promising biomarker in predicting poor prognosis and therapeutic response in human nasopharygeal carcinoma. PLoS ONE 10:e0117375

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  5. 5.

    Boussen H, Ghorbal L, Naouel L et al (2012) Nasopharyngeal cancer around the Mediterranean area: standard of care. Crit Rev OncolHematol 84(Suppl 1):e106–e109

    Article  Google Scholar 

  6. 6.

    Chang ET, Adami HO (2006) The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer EpidemiolBiomarkPrev 15(10):1765–1777

    CAS  Google Scholar 

  7. 7.

    Hildesheim A, Wang CP (2012) Genetic predisposition factors and nasopharyngeal carcinoma risk: a review of epidemiological association studies, 2000–2011: Rosetta Stone for NPC: genetics, viral infection, and other environmental factors. Semin Cancer Biol 22:107–116

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Feng BJ, Khyatti M, Ben-Ayoub W et al (2009) Cannabis, tobacco and domestic fumes intake are associated with nasopharyngeal carcinoma in North Africa. Br J Cancer 101(7):1207–1212

    PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Simons MJ (2011) Nasopharyngeal carcinoma as a paradigm of cancer genetics. Chin J Cancer 30(2):79–84

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Aouf S, Laaribi E, Gabbouj S (2019) Contribution of Nitric oxide synthase 3 genetic variants to nasopharyngeal carcinoma risk and progression in a Tunisian population. Eur Arch Otorhinolaryngol 276(4):1231–1239

    PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Huang YJ, Zhang BB, Ma N, Murata M, Tang AZ, Huang GW (2011) Nitrativeand oxidative DNA damage as potential survival biomarkers for nasopharyngeal carcinoma. Med Oncol 28:377–384

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Sharma A, Yuen D, Huet O et al (2016) Lack of glutathione peroxidase-1 facilitates a pro-inflammatory and activated vascular endothelium. VasculPharmacol 79:32–42

    CAS  Google Scholar 

  13. 13.

    Flohé L (1988) Glutathione peroxidase. Basic Life Sci 49:663–668

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Ichimura Y, Habuchi T, Tsuchiya N et al (2004) Increased risk of bladder cancer associated with a glutathione peroxidase 1 codon 198 variant. J Urol 172(2):728–732

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Raaschou-Nielsen O, Sørensen M, Hansen RD et al (2007) GPX1 Pro198Leu polymorphism, interactions with smoking and alcohol consumption, and risk for lung cancer. CancerLett 247:293–300

    CAS  Google Scholar 

  16. 16.

    Hu J, Zhou GW, Wang N et al (2010) GPX1 Pro198Leu polymorphism and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 124(2):425–431

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Hansen RD, Krath BN, Frederiksen K et al (2009) GPX1 Pro(198)Leu polymorphism, erythrocyte GPX activity, interaction with alcohol consumption and smoking, and risk of colorectal cancer. Mutat Res 664(1–2):13–19

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Arsova-Sarafinovska Z, Matevska N, Eken A et al (2009) Glutathione peroxidase 1 (GPX1) genetic polymorphism, erythrocyte GPX activity, and prostate cancer risk. IntUrolNephrol 41(1):63–70

    CAS  Google Scholar 

  19. 19.

    Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16(3):1215

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Aydin A, Hilmi O, Sayal A (2001) Oxidative stress and nitric oxide related parameters in type II diabetes mellitus: effects of glycemic control. ClinBiochem 34:65–70

    CAS  Google Scholar 

  21. 21.

    Whang-Peng J, Knutsen T, Gazdar A et al (1991) structural and numerical chromosome changes in non-small cell lung cancer. Genes Chromosomes Cancer 3:168–188

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Yokoyama S, Yamakawa K, Tsuchiya E (1992) Deletion mapping on the short arm of chromosome 3 in squamous cell carcinoma and adenocarcinoma of the lung. Cancer Res 52:873–877

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Zhang JX, Wang ZM, Zhang JJ (2014) Association of glutathione peroxidase-1 (GPx-1) rs1050450 Pro198Leu and Pro197Leu polymorphisms with cardiovascular risk: a meta-analysis of observational studies. J GeriatrCardiol 11(2):141–150

    Google Scholar 

  24. 24.

    Diwadkar-Navsariwala V, Diamond AM (2004) The link between selenium and chemoprevention: a case for selenoproteins. J Nutr 134:2899–2902

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Zhuo P, Diamond AM (2009) Molecular mechanisms by which selenoproteins affect cancer risk and progression. BiochimBiophysActa 1790:1546–1554

    CAS  Google Scholar 

  26. 26.

    Gouaze V, Andrieu-Abadie N, Cuvillier O et al (2002) Glutathione peroxidase-1 protects from CD95-induced apoptosis. J BiolChem 277:42867–42874

    CAS  Google Scholar 

  27. 27.

    Baliga MS, Wang H, Zhuo P (2007) Selenium and GPx-1 overexpression protect mammalian cells against UV-induced DNA damage. Biol Trace Elem Res 115:227–242

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Diamond AM, Hu YJ, Mansur DB (2001) Glutathione peroxidase and viral replication: implications for viral evolution and chemoprevention. BioFactors 14:205–210

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29

    Jiao Y, Wang Y, Guo S, Wang G (2017) Glutathione peroxidases as oncotargets. Oncotarget 8(45):80093–80102

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Brigelius-Flohé R, Kipp AP (2012) Physiological functions of GPx2 and its role in inflammation-triggered carcinogenesis. Ann N Y AcadSci 1259:19–25

    Article  CAS  Google Scholar 

  31. 31.

    Zhuo P, Goldberg M, Herman L (2009) Molecular consequences of genetic variations in the glutathione peroxidase 1 selenoenzyme. Can Res 69(20):8183–8190

    CAS  Article  Google Scholar 

  32. 32.

    Lee C-H, Lee KY, Choe K-H (2006) Effects of oxidative DNA damage and genetic polymorphism of the glutathione peroxidase 1 (GPX1) and 8-oxoguanine glycosylase1 (hOGG1) on lung cancer. J Prev Med Public Health 39(2):130–134

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Liwei L, Wei Z, Ruifa H et al (2012) Association between genetic variants in glutathione peroxidase 1 gene and risk of prostate cancer: a meta-analysis. MolBiol Rep 39:8615–8619

    Google Scholar 

  34. 34.

    Parlaktas BS, Atilgan D, Gencten Y (2015) A pilot study of the association of manganese superoxide dismutase and glutathione peroxidase 1 single gene polymorphisms with prostate cancer and serum prostate specific antigen levels. Arch Med Sci 11(5):994–1000

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Men T, Zhang X, Yang J et al (2014) The rs1050450 C > T polymorphism of GPX1 is associated with the risk of bladder but not prostate cancer: evidence from a meta-analysis. TumorBiol 35(1):269–275

    CAS  Google Scholar 

  36. 36.

    Paz-y-Mino C, Munoz MJ, Lopez-Cortes A et al (2010) Frequency of polymorphisms pro198leu in GPX-1 gene and ile58thr in MnSOD gene in the altitude Ecuadorian population with bladder cancer. Oncol Res 18:395–400

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Erdem O, Eken A, Akay C (2012) Association of GPX1 polymorphism, GPX activity and prostate cancer risk. Hum ExpToxicol 31(1):24–31

    CAS  Article  Google Scholar 

  38. 38.

    Choi JY, Neuhouser ML, Barnett M et al (2007) Polymorphisms in oxidative stress-related genes are not associated with prostate cancer risk in heavy smokers. Cancer Epidemiol Biomarkers Prev 16:1115–1120

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Ravn-Haren G, Olsen A, Tjonneland A et al (2006) Associations between GPX1 Pro198Leu polymorphism, erythrocyte GPX activity, alcohol consumption and breast cancer risk in a prospective cohort study. Carcinogenesis 27:820–825

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Hu Y, Benya RV, Carroll RE et al (2005) Allelic loss of the gene for the GPX1 selenium-containing protein is a common event in cancer. J Nutr 135:3021S-3024S

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Knight JA, Onay UV, Wells S (2004) Genetic variants of GPX1 and SOD2 and breast cancer risk at the Ontario site of breast cancer family registry. Cancer EpidemiolBiomarkPrev 13:146–149

    CAS  Google Scholar 

  42. 42.

    Cox DG, Hankinson SE, Kraft P et al (2004) No association between GPX1Pro198Leu and breast cancer risk. Cancer EpidemiolBiomarkPrev 13:1821–1822

    CAS  Google Scholar 

  43. 43.

    Ratnasinghe D, Tangrea JA, Andersen MR et al (2000) Glutathione peroxidase codon 198 polymorphism variant increases lung cancer risk. Cancer Res 60(22):6381–6383

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Yang P, Bamlet WR, Ebbert JO (2004) Glutathione pathway genes and lung cancer risk in young and old populations. Carcinogenesis 25:1935–1944

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Fadhlaoui-Zid K, Garcia-Bertrand R, Alfonso-Sanchez MA (2015) Sousse: extreme genetic heterogeneity in North Africa. J Hum Genet 60(1):41–49

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Ishida K, Morino T, Takagi K, Sukenaga Y (1987) Nucleotide sequence of a human gene for glutathione peroxidase. Nucleic Acids Res 15(23):10051

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47

    Chen J, Cao Q, Qin C et al (2011) GPx-1 polymorphism (rs1050450) contributes to tumor susceptibility: evidence from meta-analysis. J Cancer Res ClinOncol 137:1553–1561

    CAS  Article  Google Scholar 

  48. 48.

    Dragsted LO, Pedersen A, Hermetter A et al (2004) The 6-a-day study: effects of fruit and vegetables on markers of oxidative stress and antioxidativedefense in healthy nonsmokers. Am J ClinNutr 79:1060–1072

    CAS  Google Scholar 

  49. 49.

    Zergoun AA, Zebboudg A, Sellam SL et al (2016) IL-6/NOS2 inflammatory signals regulate MMP-9 and MMP-2 activity and disease outcome in nasopharyngeal carcinoma patients. TumorBiol 37(3):3505–3514

    CAS  Google Scholar 

  50. 50.

    Zhang Y, Handy DE, Loscalzo J (2005) Adenosine-dependant induction of glutathione peroxidase 1 in human primary endothelial cells and protection against oxidative stress. Circ Res 96:831–837

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Gourzones C, Barjon C, Busson P (2012) Host-tumor interactions in nasopharyngeal carcinomas. Semin Cancer Biol 22:127–136

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministry of Higher Education and Scientific Research and by the Ministry of Health of the Republic of Tunisia. The authors would like to thank Dr. Samir Bougattaya for proof-reading the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hedi Harizi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Laribi, A., Aouf, S., Gabbouj, S. et al. Human glutathione peroxidase codon 198 variant increases nasopharyngeal carcinoma risk and progression. Eur Arch Otorhinolaryngol (2021). https://doi.org/10.1007/s00405-021-06628-5

Download citation

Keywords

  • Gpx-1 gene
  • 198Leu mutation
  • Plasma GPx activity
  • Nasopharyngeal carcinoma
  • Clinicopathological parameters