Skip to main content
Log in

Heat shock protein 70 is induced by pepsin via MAPK signaling in human nasal epithelial cells

  • Rhinology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Background

Recent studies have shown that laryngopharyngeal reflux is associated with chronic rhinosinusitis. Pepsin may be a key factor involved in the injury of nasal mucosal epithelial cells, but the pathogenesis remains unclear. We are to investigate whether a mitogen-activated protein kinase (MAPK) pathway regulates heat shock protein 70 (HSP70) expression in primary cultures of human nasal epithelial cells (HNEpCs) in response to pepsin stimulation.

Methods

HSP70 protein expression levels in HNEpCs were estimated by Western blot analysis after treatment with pepsin. MAPK pathway activity levels were also evaluated to elucidate the mechanism underlying the effects of pepsin on HSP70 in HNEpCs. Inhibitors of signaling pathways were used to determine the contribution of MAPKs in HSP70 response after pepsin stimulation. Cellular apoptosis and cell viability in HNEpCs after treatment with pepsin were measured.

Results

The expression of HSP70 increased after stimulation with pepsin and decreased after the removal of pepsin. Pepsin induced activation of p38, extracellular signal-regulated kinase 1/2, and c-Jun N-terminal kinase (JNK) 1/2. Inhibition of JNK1/2 reduced HSP70 expression in HNEpCs. The apoptosis in HNEpCs at 12 h after treatment with pepsin at pH 7.0 increased significantly when compared with the control and pH 7.0 groups. Cell viability decreased following exposure to pepsin at pH 7.0.

Conclusion

Pepsin, even under neutral pH 7.0, increases the expression of HSP70 in HNEpCs by activating the JNK/MAPK signaling pathway. Increased HSP70 may be the protective mechanism when pepsin presents in the other parts of the body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hastan D, Fokkens WJ, Bachert C, Newson RB, Bislimovska J, Bockelbrink A, Bousquet PJ, Brozek G, Bruno A, Dahlén SE, Forsberg B, Gunnbjörnsdóttir M, Kasper L, Krämer U, Kowalski ML, Lange B, Lundbäck B, Salagean E, Todo-Bom A, Tomassen P, Toskala E, van Drunen CM, Bousquet J, Zuberbier T, Jarvis D, Burney P (2011) Chronic rhinosinusitis in Europe—an underestimated disease. A GA2LEN study. Allergy 66(9):1216–1223

    Article  PubMed  CAS  Google Scholar 

  2. Dibaise JK, Sharma VK (2006) Does gastroesophageal reflux contribute to the development of chronic sinusitis? A review of the evidence. Dis Esophagus 19(6):419–424

    Article  PubMed  CAS  Google Scholar 

  3. Lin YH, Chang TS, Yao YC, Li YC (2015) Increased risk of chronic sinusitis in adults with gastroesophgeal reflux disease: a nationwide population-based cohort study. Medicine (Baltimore) 94(39):e1642

    Article  Google Scholar 

  4. Sharma N, Agrawal A, Freeman J, Vela MF, Castell D (2008) An analysis of persistent symptoms in acid-suppressed patients undergoing impedance-pH monitoring. Clin Gastroenterol Hepatol 6(5):521–524

    Article  PubMed  Google Scholar 

  5. Kawamura O, Aslam M, Rittmann T, Hofmann C, Shaker R (2004) Physical and pH properties of gastroesophagopharyngeal refluxate: a 24-hour simultaneous ambulatory impedance and pH monitoring study. Am J Gastroenterol 99(6):1000–1010

    Article  PubMed  Google Scholar 

  6. Bardhan KD, Strugala V, Dettmar PW (2012) Reflux revisited: advancing the role of pepsin. Int J Otolaryngol 2012:646901

    Article  PubMed  Google Scholar 

  7. Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295(5561):1852–1858

    Article  PubMed  CAS  Google Scholar 

  8. Dreiseidler M, Dick N, Höhfeld J (2012) Analysis of chaperone-assisted ubiquitylation. Methods Mol Biol 832(:473–487

    Article  PubMed  CAS  Google Scholar 

  9. Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6(4):435–442

    Article  PubMed  CAS  Google Scholar 

  10. Seki T, Yoshino KI, Tanaka S, Dohi E, Onji T, Yamamoto K, Hide I, Paulson HL, Saito N, Sakai N (2012) Establishment of a novel fluorescence-based method to evaluate chaperone-mediated autophagy in a single neuron. PLoS One 7(2):e31232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Currie RW, Karmazyn M, Kloc M, Mailer K (1988) Heat-shock response is associated with enhanced postischemic ventricular recovery. Circ Res 63(3):543–549

    Article  PubMed  CAS  Google Scholar 

  12. Sittler A, Lurz R, Lueder G, Priller J, Lehrach H, Hayer-Hartl MK, Hartl FU, Wanker EE (2001) Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington’s disease. Hum Mol Genet 10(12):1307–1315

    Article  PubMed  CAS  Google Scholar 

  13. Kürthy M, Mogyorósi T, Nagy K, Kukorelli T, Jednákovits A, Tálosi L, Bíró K (2002) Effect of BRX-220 against peripheral neuropathy and insulin resistance in diabetic rat models. Ann N Y Acad Sci 967:482–489

    Article  PubMed  Google Scholar 

  14. Lin D, Lin H, Xiong X (2014) Expression and role of BAG-1 in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps. Inflammation 37(6):1912–1918

    Article  PubMed  CAS  Google Scholar 

  15. Min HJ, Hong SC, Yang HS, Mun SK, Lee SY (2016) Expression of CAIII and Hsp70 Is increased the mucous membrane of the posterior commissure in laryngopharyngeal reflux disease. Yonsei Med J 57(2):469–474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Wang J, Yu Z, Ren J, Xu Y, Zhang Y, Lei L, Zheng Y, Huang L, He Z (2017) Effects of pepsin A on heat shock protein 70 response in laryngopharyngeal reflux patients with chronic rhinosinusitis. Acta Otolaryngol 137(12):1253–1259

    Article  PubMed  CAS  Google Scholar 

  17. Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79(1):143–180

    Article  PubMed  CAS  Google Scholar 

  18. Rubinfeld H, Seger R (2005) The ERK cascade: a prototype of MAPK signaling. Mol Biotechnol 31(2):151–174

    Article  PubMed  CAS  Google Scholar 

  19. Bogoyevitch MA, Ngoei KR, Zhao TT, Yeap YY, Ng DC (2010) c-Jun N-terminal kinase (JNK) signaling: recent advances and challenges. Biochim Biophys Acta 1804(3):463–475

    Article  PubMed  CAS  Google Scholar 

  20. Kyriakis JM, Avruch J (2012) Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev 92(2):689–737

    Article  PubMed  CAS  Google Scholar 

  21. Naor Z, Benard O, Seger R (2000) Activation of MAPK cascades by G-protein-coupled receptors: the case of gonadotropin-releasing hormone receptor. Trends Endocrinol Metab 11(3):91–99

    Article  PubMed  CAS  Google Scholar 

  22. Rangarajan A, Hong SJ, Gifford A, Weinberg RA (2004) Species- and cell type-specific requirements for cellular transformation. Cancer Cell 6(2):171–183

    Article  PubMed  CAS  Google Scholar 

  23. Volloch V, Gabai VL, Rits S, Force T, Sherman MY (2000) HSP72 can protect cells from heat-induced apoptosis by accelerating the inactivation of stress kinase JNK. Cell Stress Chaperones 5(2):139–147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Takeda K, Matsuzawa A, Nishitoh H, Tobiume K, Kishida S, Ninomiya-Tsuji J, Matsumoto K, Ichijo H (2004) Involvement of ASK1 in Ca2+-induced p38 MAP kinase activation. EMBO Rep 5(2):161–166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Matsuzawa A, Saegusa K, Noguchi T, Sadamitsu C, Nishitoh H, Nagai S, Koyasu S, Matsumoto K, Takeda K, Ichijo H (2005) ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity. Nat Immunol 6(6):587–592

    Article  PubMed  CAS  Google Scholar 

  26. Rafiee P, Theriot ME, Nelson VM, Heidemann J, Kanaa Y, Horowitz SA, Rogaczewski A, Johnson CP, Ali I, Shaker R, Binion DG (2006) Human esophageal microvascular endothelial cells respond to acidic pH stress by PI3K/AKT and p38 MAPK-regulated induction of Hsp70 and Hsp27. Am J Physiol Cell Physiol 291(5):C931–C945

    Article  PubMed  CAS  Google Scholar 

  27. Bironaite D, Brunk U, Venalis A (2013) Protective induction of Hsp70 in heat-stressed primary myoblasts: Involvement of MAPKs. J Cell Biochem 114(9):2024–2031

    Article  PubMed  CAS  Google Scholar 

  28. Johnston N, Dettmar PW, Bishwokarma B, Lively MO, Koufman JA (2007) Activity/stability of human pepsin: implications for reflux attributed laryngeal disease. Laryngoscope 117(6):1036–1039

    Article  PubMed  Google Scholar 

  29. Adhami T, Goldblum JR, Richter JE, Vaezi MF (2004) The role of gastric and duodenal agents in laryngeal injury: an experimental canine model. Am J Gastroenterol 99(11):2098–2106

    Article  PubMed  Google Scholar 

  30. Johnston N, Wells CW, Blumin JH, Toohill RJ, Merati AL (2007) Receptor-mediated uptake of pepsin by laryngeal epithelial cells. Ann Otol Rhinol Laryngol 116(12):934–938

    Article  PubMed  Google Scholar 

  31. Johnston N, Dettmar PW, Lively MO, Postma GN, Belafsky PC, Birchall M, Koufman JA (2006) Effect of pepsin on laryngeal stress protein (Sep70, Sep53, and Hsp70) response: role in laryngopharyngeal reflux disease. Ann Otol Rhinol Laryngol 115(1):47–58

    Article  PubMed  Google Scholar 

  32. Washington N, Steele RJ, Jackson SJ, Bush D, Mason J, Gill DA, Pitt K, Rawlins DA (2000) Determination of baseline human nasal pH and the effect of intranasally administered buffers. Int J Pharm 198(2):139–146

    Article  PubMed  CAS  Google Scholar 

  33. DelGaudio JM (2005) Direct nasopharyngeal reflux of gastric acid is a contributing factor in refractory chronic rhinosinusitis. Laryngoscope 115(6):946–957

    Article  PubMed  Google Scholar 

  34. Ang D, Liberek K, Skowyra D, Zylicz M, Georgopoulos C (1991) Biological role and regulation of the universally conserved heat shock proteins. J Biol Chem 266(36):24233–24236

    PubMed  CAS  Google Scholar 

  35. Benjamin IJ, McMillan DR (1998) Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circ Res 83(2):117–132

    Article  PubMed  CAS  Google Scholar 

  36. Amrani M, Corbett J, Allen NJ, O’Shea J, Boateng SY, May AJ, Dunn MJ, Yacoub MH (1994) Induction of heat-shock proteins enhances myocardial and endothelial functional recovery after prolonged cardioplegic arrest. Ann Thorac Surg 57(1):157–160

    Article  PubMed  CAS  Google Scholar 

  37. Kukreja RC, Qian YZ, Okubo S, Flaherty EE (1999) Role of protein kinase C and 72 kDa heat shock protein in ischemic tolerance following heat stress in the rat heart. Mol Cell Biochem 195(1–2):123–131

    Article  PubMed  CAS  Google Scholar 

  38. Kabakov AE, Budagova KR, Bryantsev AL, Latchman DS (2003) Heat shock protein 70 or heat shock protein 27 overexpressed in human endothelial cells during posthypoxic reoxygenation can protect from delayed apoptosis. Cell Stress Chaperones 8(4):335–347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Jäättelä M, Saksela K, Saksela E (1989) Heat shock protects WEHI-164 target cells from the cytolysis by tumor necrosis factors alpha and beta. Eur J Immunol 19(8):1413–1417

    Article  PubMed  Google Scholar 

  40. Larrick JW, Wright SC (1990) Cytotoxic mechanism of tumor necrosis factor-alpha. FASEB J 4(14):3215–3223

    Article  PubMed  CAS  Google Scholar 

  41. Margulis BA, Sandler S, Eizirik DL, Welsh N, Welsh M (1991) Liposomal delivery of purified heat shock protein hsp70 into rat pancreatic islets as protection against interleukin 1 beta-induced impaired beta-cell function. Diabetes 40(11):1418–1422

    Article  PubMed  CAS  Google Scholar 

  42. Zhang HY, Zhang X, Chen X, Thomas D, Hormi-Carver K, Elder F, Spechler SJ, Souza RF (2008) Differences in activity and phosphorylation of MAPK enzymes in esophageal squamous cells of GERD patients with and without Barrett’s esophagus. Am J Physiol Gastrointest Liver Physiol 295(3):G470–G478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Zhang L, Liu G, Han X, Liu J, Li GX, Zou DW, Li ZS (2015) Inhibition of p38 MAPK activation attenuates esophageal mucosal damage in a chronic model of reflux esophagitis. Neurogastroenterol Motil 27(11):1648–1656

    Article  PubMed  CAS  Google Scholar 

  44. Uehara T, Kaneko M, Tanaka S, Okuma Y, Nomura Y (1999) Possible involvement of p38 MAP kinase in HSP70 expression induced by hypoxia in rat primary astrocytes. Brain Res 823(1–2):226–230

    Article  PubMed  CAS  Google Scholar 

  45. Sheikh-Hamad D, Di MJ, Suki WN, Safirstein R, Watts BA, Rouse D (1998) p38 kinase activity is essential for osmotic induction of mRNAs for HSP70 and transporter for organic solute betaine in Madin-Darby canine kidney cells. J Biol Chem 273(3):1832–1837

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study was funded by the International Scientific and Technological Cooperation Projects of Sichuan Province (no. 2016HH0064); Fundamental Research Funds for the Central Universities (No. 2012017yjsy118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhao, Y., Ren, J. et al. Heat shock protein 70 is induced by pepsin via MAPK signaling in human nasal epithelial cells. Eur Arch Otorhinolaryngol 276, 767–774 (2019). https://doi.org/10.1007/s00405-018-5254-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-018-5254-3

Keywords

Navigation