Skip to main content
Log in

Differential expression of immune markers in the patients with obstructive sleep apnea/hypopnea syndrome

  • Rhinology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate phenotypic changes of various immune cells in the peripheral blood in the patients with sleep apnea/hypopnea syndrome (OSAHS).

Methods

This is a case–control study. The peripheral venous blood was collected. A subset of T cells, B cells, natural killer cells, and dendritic cells was analysed using various markers and flow cytometry. Regression curve analysis was made to examine the correlation between the change of immune cells and aponea hypoxia index (AHI) and oxygen desaturation.

Results

The percentage of CD3+/CD4+ T lymphocytes (P < 0.001) and CD19+ B cells (P < 0.001) and the CD4+/CD8+ ratio (P < 0.001) in the OSAHS patients were significantly increased compared with those in the control group without OSAHS, and CD4+/CD8+ ratio positively correlated with aponea hypoxia index (r = 0.37, P < 0.001) but negatively correlated with the lowest SaO2 (r = − 0.2, P < 0.001), whereas a greater reduction in the percentage of CD3+/CD8+ T cells (P < 0.001). Moreover, the ratios of CD3+/CD16+/CD56+ natural killer (NK)-like T cells (P < 0.05) and CD3/CD16+/CD56+ NKT cells (P < 0.001) were significantly lower in the OSAHS group than those in the control group. However, no significant difference was observed in the percentage of CD3+ total T cells, CD8+/CD28+ T cells, CD8+/CD28 T cells, DC1, DC2, and DC1/DC2 dendritic cells between the OSAHS and control groups.

Conclusion

Our study showed differential responses of various types of immune cells in the peripheral blood in patients with OSAHS and their correlation with severity of oxygen desaturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mbata G, Chukwuka J (2012) Obstructive sleep apnea hypopnea syndrome. Ann Med Health Sci Res 2(1):74

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gale SD, Hopkins RO (2004) Effects of hypoxia on the brain: neuroimaging and neuropsychological findings following carbon monoxide poisoning and obstructive sleep apnea. J Int Neuropsychol Soc 10(1):60–71

    Article  PubMed  Google Scholar 

  3. Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM (2013) Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol 177(9):1006–1014. https://doi.org/10.1093/aje/kws342

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mingari MC, Ponte M, Bertone S, Schiavetti F, Vitale C, Bellomo R, Moretta A, Moretta L (1998) HLA class I-specfiic inhibitory receptors in human T lymphocytes: interleukin 15-induced expression of CD94/NKG2A in superantigen-or alloantigen-activated CD8 + T cells. Proc Natl Acad Sci U S A 95(3):1172–1177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Dyugovskaya L, Lavie P, Lavie L (2005) Lymphocyte activation as a possible measure of atherosclerotic risk in patients with sleep apnea. Ann N Y Acad Sci 1051:340–350

    Article  PubMed  CAS  Google Scholar 

  6. Valham F, Mooe T, Rabben T, Stenlund H, Wiklund U, Franklin KA (2008) Increased risk of stroke in patients with coronary artery disease and sleep apnea: a 10-year follow-up. Circulation 118(9):955–960. https://doi.org/10.1161/CIRCULATIONAHA.108.783290

    Article  PubMed  Google Scholar 

  7. Dempsey JA, Veasey SC, Morgan BJ, O’Donnell CP (2010) Pathophysiology of sleep apnea. Physiol Rev 90(1):47–112. https://doi.org/10.1152/physrev.00043.2008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Peker Y, Carlson J, Hedner J (2006) Increased incidence of coronary artery. Eur Respir J 28(3):596–602

    Article  PubMed  CAS  Google Scholar 

  9. Drager LF, McEvoy RD, Barbe F, Lorenzi-Filho G, Redline S, INCOSACT Initiative (International Collaboration of Sleep Apnea Cardiovascular Trialists) (2017) Sleep apnea and cardiovascular disease: lessons from recent trials and need for team science. Circulation 136(19):1840–1850

    Article  PubMed  PubMed Central  Google Scholar 

  10. Strohl KP, Redline S (1996) Recognition of obstructive sleep apnea. Am J Respir Crit Care Med 154(2 Pt 1):279–289

    Article  PubMed  CAS  Google Scholar 

  11. Yaggi HK, Concato J, Kernan WN, Lichtman JH, Brass LM, Mohsenin V (2005) Obstructive sleep apnea as a risk factor for stroke and death. N Engl J Med 353(19):2034–2041

    Article  PubMed  CAS  Google Scholar 

  12. Wieckowski EU, Visus C, Szajnik M, Szczepanski MJ, Storkus WJ, Whiteside TL (2009) Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8 + T lymphocytes. J Immunol 183(6):3720–3730

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Azagra-Calero E, Espinar-Escalona E, Barrera-Mora JM, Llamas-Carreras JM, Solano-Reina E (2012) Obstructive sleep apnea syndrome (OSAS): review of the literature. Med Oral Patol Oral Cir Bucal 17(6):e925–e929

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang Z, Wang C (2017) Immune status of children with obstructive sleep apnea/hypopnea syndrome. Pak J Med Sci 33(1):195–199

    PubMed  PubMed Central  Google Scholar 

  15. Coman AC, Borzan C, Vesa CS, Todea DA (2016) Obstructive sleep apnea syndrome and the quality of life. Clujul Med 89(3):390–395. https://doi.org/10.15386/cjmed-593

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fleming WE, Ferouz-Colborn A, Samoszuk MK, Azad A, Lu J, Riley JS, Cruz AB, Podolak S, Clark DJ, Bray KR, Southwick PC (2016) Blood biomarkers of endocrine, immune, inflammatory, and metabolic systems in obstructive sleep apnea. Clin Biochem 49(12):854–861. https://doi.org/10.1016/j.clinbiochem.2016.05.005

    Article  PubMed  CAS  Google Scholar 

  17. Geiger SS, Fagundes CT, Siegel RM (2015) Chrono-immunology: progress and challenges in understanding links between the circadian and immune systems. Immunology 146(3):349–358. https://doi.org/10.1111/imm.12525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Murphy K (2017) Janeway’s immunobiology (9 th. edn.). Garland Science Taylor & Francis Group, LLC, New York

    Google Scholar 

  19. Gozal D, Farré R, Nieto FJ (2015) Putative links between sleep apnea and cancer: from hypotheses to evolving evidence. Chest 148(5):1140–1147. https://doi.org/10.1378/chest.15-0634

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dyugovskaya L, Lavie P, Lavie L (2003) Phenotypic and functional characterization of blood gammadelta T cells in sleep apnea. Am J Respir Crit Care Med 168(2):242–249

    Article  PubMed  Google Scholar 

  21. Dyugovskaya L, Lavie P, Hirsh M, Lavie L (2005) Activated CD8 + T-lymphocytes in obstructive sleep apnoea. Eur Respir J 25(5):820–828

    Article  PubMed  CAS  Google Scholar 

  22. Kim J, Bhattacharjee R, Dayyat E, Snow AB, Kheirandish-Gozal L, Goldman JL, Li RC, Serpero LD, Clair HB, Gozal D (2009) Increased Cellular Proliferation And Inflammatory Cytokines In Tonsils Derived From Children With Obstructive Sleep Apnea. Pediatr Res 66(4):423–428. https://doi.org/10.1203/PDR.0b013e3181b453e3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Qin YH, Cai Z, Qiu YR (2010) T cell subsets and NK cell level in patients with obstructive sleep apnea/hypopnea syndrome. Guangdong Med J 31(5):615–616

    CAS  Google Scholar 

  24. Zhang Z, Wang C (2017) Immune status of children with obstructive sleep apnea/hypopnea syndrome. Pak J Med Sci 33(1):195–199. https://doi.org/10.12669/pjms.331.11959

    Article  PubMed  PubMed Central  Google Scholar 

  25. Staats R, Rodrigues R, Barros A, Bacelar-Nicolau L, Aguiar M, Fernandes D, Moreira S, Simões A, Silva-Santos B, Rodrigues JV, Barbara C, de Almeida AB, Moita LF (2018) Decrease of perforin positive CD3+γδ-T cells in patients with obstructive sleep disordered breathing. Sleep Breath 22(1):211–221. https://doi.org/10.1007/s11325-017-1602-6

    Article  PubMed  Google Scholar 

  26. Domagała-Kulawik J, Osińska I, Piechuta A, Bielicki P, Skirecki T (2015) T, B, and NKT Cells in systemic inflammation in obstructive sleep apnoea. Mediators Inflamm 2015:161579. https://doi.org/10.1155/2015/161579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Gaoatswe G, Kent BD, Corrigan MA, Nolan G, Hogan AE, McNicholas WT, O’Shea D (2015) Invariant natural killer T cell deficiency and functional impairment in sleep apnea: links to cancer comorbidity. Sleep 38(10):1629–1634. https://doi.org/10.5665/sleep.5062

    Article  PubMed  PubMed Central  Google Scholar 

  28. Editing committee of Chinese Journal of Otorhinolaryngology Head and Neck Surgery (2002) Diagnostic criteria for OSAHS and criteria for outcome evaluation and indication of Uvulopalatopharyngoplasty. Chin J Otorhinolaryngol Head Neck Surg 37:403–404

    Google Scholar 

  29. Ye JY, Li WY (2009) Diagnosis and guideline for surgical treatment of OSAHS. Chin J Otorhinolaryngol Head Neck Surg 44:91–94

    Google Scholar 

  30. Ryan S, Taylor CT, McNicholas WT (2006) Predictors of elevated nuclear factor-kappaB-dependent genes in obstructive sleep apnea syndrome. Am J Respir Crit Care Med 174(7):824–830

    Article  PubMed  CAS  Google Scholar 

  31. Unnikrishnan D, Jun J, Polotsky V (2015) Inflammation in sleep apnea: an update. Rev Endocr Metab Disord 16(1):25–34. https://doi.org/10.1007/s11154-014-9304-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Vicente E, Marin JM, Carrizo SJ, Osuna CS, González R, Marin-Oto M, Forner M, Vicente P, Cubero P, Gil AV, Soler X (2016) Upper airway and systemic inflammation in obstructive sleep apnoea. Eur Respir J 48(4):1108–1117. https://doi.org/10.1183/13993003.00234-2016

    Article  PubMed  CAS  Google Scholar 

  33. Bollinger T, Bollinger A, Skrum L, Dimitrov S, Lange T, Solbach W (2009) Sleep-dependent activity of T cells andregulatory T cells. Clin Exp Immunol 155(2):231–238. https://doi.org/10.1111/j.1365-2249.2008.03822.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Freire AX, Kadaria D, Avecillas JF, Murillo LC, Yataco JC (2010) Obstructive sleep apnea and immunity: relationship of lymphocyte count and apnea hypopnea index. South Med J 103(8):771–774. https://doi.org/10.1097/SMJ.0b013e3181e6dabf

    Article  PubMed  Google Scholar 

  35. McNamee EN, Korns Johnson D, Homann D, Clambey ET (2013) Hypoxia and hypoxia-inducible factors as regulators of T cell development, differentiation, and function. Immunol Res 55(1–3):58–70. https://doi.org/10.1007/s12026-012-8349-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Vroom TM1, Scholte G, Ossendorp F, Borst J (1991) Tissue distribution of human gamma delta T cells: no evidence for general epithelial tropism. J Clin Pathol 44(12):1012–1017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Punit S, Dubé PE, Liu CY, Girish N, Washington MK, Polk DB (2015) Tumor necrosis factor receptor 2 restricts the pathogenicity of CD8(+) T cells in mice with colitis. Gastroenterology 149(4):993–1005.e2. https://doi.org/10.1053/j.gastro.2015.06.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Akbarpour M, Khalyfa A, Qiao Z, Gileles-Hillel A, Almendros I, Farré R, Gozal D (2017) Altered CD8+ T-Cell lymphocyte function and TC1 Cell stemness contribute to enhanced malignant tumor properties in murine models of sleep apnea. Sleep 40(2). https://doi.org/10.1093/sleep/zsw040

  39. Borthwick NJ, Lowdell M, Salmon M, Akbar AN (2000) Loss of CD28 expression on CD8+ T cells is induced by IL-2 receptor γ chain signalling cytokines and type I IFN, and increases susceptibility to activation-induced apoptosis. Int Immunol 12(7):1005–1013

    Article  PubMed  CAS  Google Scholar 

  40. Prather AA, Gurfein B, Moran P, Daubenmier J, Acree M, Bacchetti P, Sinclair E, Lin J, Blackburn E, Hecht FM, Epel ES (2015) Tired telomeres: Poor global sleep quality, perceived stress, and telomere length in immune cell subsets in obese men and women. Brain Behav Immun 47:155–162. https://doi.org/10.1016/j.bbi.2014.12.011

    Article  PubMed  CAS  Google Scholar 

  41. Effros RB, Dagarag M, Spaulding C, Man J (2005) The role of CD8+ T-cell replicative senescence in human aging. Immunol Rev 205:147–157

    Article  PubMed  CAS  Google Scholar 

  42. Said EA, Al-Abri MA, Al-Saidi I, Al-Balushi MS, Al-Busaidi JZ, Al-Reesi I, Koh CY, Hasson SS, Idris MA, Al-Jabri AA, Habbal O (2017) Altered blood cytokines, CD4 T cells, NK and neutrophils in patients with obstructive sleep apnea. Immunol Lett 190:272–278. https://doi.org/10.1016/j.imlet.2017.08.009

    Article  PubMed  CAS  Google Scholar 

  43. Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133(5):775–787. https://doi.org/10.1016/j.cell.2008.05.009

    Article  PubMed  CAS  Google Scholar 

  44. Ye J, Liu H, Zhang G, Li P, Wang Z, Huang S, Yang Q, Li Y (2012) The Treg/Th17 imbalance in patients with obstructive sleep apnoea syndrome. Mediators Inflamm 2012:815308. https://doi.org/10.1155/2012/815308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Takahashi T, Kuniyasu Y, Toda M, Sakaguchi N, Itoh M, Iwata M, Shimizu J, Sakaguchi S (1998) Immunologic self-tolerance maintained by CD25 + CD4 + naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol 10(12):1969–1980

    Article  PubMed  CAS  Google Scholar 

  46. Thounaojam MC, Dudimah DF, Pellom ST Jr, Uzhachenko RV, Carbone DP, Dikov MM, Shanker A (2016) Bortezomib enhances expression of effector molecules in antitumor CD8+ T lymphocytes by modulating Notch-NF-kB-miR-155 crosstalk. Oncotarget 6(32):32439–32455. https://doi.org/10.18632/oncotarget.5857

    Article  Google Scholar 

  47. Loza MJ, Perussia B (2004) Differential regulation of NK cell proliferation by type I and type II IFN. Int Immunol 16(1):23–32

    Article  PubMed  Google Scholar 

  48. Freud AG, Mundy-Bosse BL, Yu J, Caligiuri MA (2017) The broad spectrum of human natural killer cell diversity. Immunity 2017;47(5):820–833. https://doi.org/10.1016/j.immuni.2017.10.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Bisogni V, Pengo MF, Maiolino G, Rossi GP (2016) The sympathetic nervous system and catecholamines metabolism in obstructive sleep apnoea. J Thorac Dis 8(2):243–254. https://doi.org/10.3978/j.issn.2072-1439.2015.11.14

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ben-Eliyahu S, Shakhar G, Page GG, Stefanski V, Shakhar K (2000) Suppression of NK cell activity and of resistance to metastasis by stress: a role for adrenal catecholamines and β-adrenoceptors. Neuroimmunomodulation 8(3):154–164

    Article  PubMed  CAS  Google Scholar 

  51. Backteman K, Ernerudh J, Jonasson L (2014) Natural killer (NK) cell deficit in coronary artery disease: no aber’[rations in phenotype but sustained reduction of NK cells is associated with low-grade inflammation. Clin Exp Immunol 175(1):104–112. https://doi.org/10.1111/cei.12210

    Article  PubMed  CAS  Google Scholar 

  52. LeBien TW, Tedder TF (2008) B lymphocytes: how they develop and function. Blood 112(5):1570–1580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. BBurrows N, Maxwell PH (2017) Hypoxia and B cells. Exp Cell Res 356(2):197–203

    Article  CAS  Google Scholar 

  54. Collin M, Bigley V (2018) Human dendritic cell subsets: an update. Immunology 154(1):3–20. https://doi.org/10.1111/imm

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Bachem A, Güttler S, Hartung E, Ebstein F, Schaefer M, Tannert A, Salama A, Movassaghi K, Opitz C, Mages HW, Henn V, Kloetzel PM, Gurka S, Kroczek RA (2010) Superior antigen cross-presentation and XCR1 expression define human CD11c + CD141 + cells as homologues of mouse CD8+ dendritic cells. J Exp Med 207(6):1273–1281. https://doi.org/10.1084/jem.20100348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Winning S, Fandrey J (2016) Dendritic cells under hypoxia: how oxygen shortage affects the linkage between innate and adaptive immunity. J Immunol Res 2016:5134329. https://doi.org/10.1155/2016/5134329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Ahrens S, Zelenay S, Sancho D, Hanč P, Kjær S, Feest C, Fletcher G, Durkin C, Postigo A, Skehel M, Batista F, Thompson B, Way M, Reis e Sousa C, Schulz O (2012) F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity 36(4):635–645. https://doi.org/10.1016/j.immuni.2012.03.008

    Article  PubMed  CAS  Google Scholar 

  58. Zhang JG, Czabotar PE, Policheni AN, Caminschi I, Wan SS, Kitsoulis S, Tullett KM, Robin AY, Brammananth R, van Delft MF, Lu J, O’Reilly LA, Josefsson EC, Kile BT, Chin WJ, Mintern JD, Olshina MA, Wong W, Baum J, Wright MD, Huang DC, Mohandas N, Coppel RL, Colman PM, Nicola NA, Shortman K, Lahoud MH (2012) The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments. Immunity 36:646–657

    Article  PubMed  CAS  Google Scholar 

  59. Schraml BU, Reise Sousa C (2015) Defining dendritic cells. Curr Opin Immunol 32:13–20. https://doi.org/10.1016/j.coi.2014.11.001

    Article  PubMed  CAS  Google Scholar 

  60. Young T, Peppard PE, Taheri S (1985) Excess weight and sleep-disordered breathing. 99, 1592–1599

  61. Shelton KE, Woodson H, Gay S, Suratt PM (1993) Pharyngeal fat in obstructive sleep apnea. Am Rev Respir Dis 148:462–466

    Article  PubMed  CAS  Google Scholar 

  62. Morselli LL, Temple KA, Leproult R, Ehrmann DA, Van Cauter E, Mokhlesi B (2018) Determinants of slow-wave activity in overweight and obese adults: roles of sex, obstructive sleep apnea and testosterone levels. Front Endocrinol (Lausanne) 9:377. https://doi.org/10.3389/fendo.2018.00377. eCollection 2018

    Article  Google Scholar 

  63. Hudgel DW, Patel SR, Ahasic AM, Bartlett SJ, Bessesen DH, Coaker MA, Fiander PM, Grunstein RR, Gurubhagavatula I, Kapur VK, Lettieri CJ, Naughton MT, Owens RL, Pepin JD, Tuomilehto H, Wilson KC (2018) American Thoracic Society Assembly on Sleep and Respiratory Neurobiology. The role of weight management in the treatment of adult obstructive sleep apnea. An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med 198(6):e70–e87. https://doi.org/10.1164/rccm.201807-1326ST

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinshu Yin.

Ethics declarations

Conflict of interest

Hong Xie has no conflict of interest, Jinshu Yin has no conflict of interest, Yunbo Bai has no conflict of interest, Hong Peng has no conflict of interest, Xiaohong Zhou has no conflict of interest, and Juan Bai has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

All participants were informed about the study and signed an informed consent form. This study was approved by the Ethical Committee of Beijing Shijitan Hospital.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, H., Yin, J., Bai, Y. et al. Differential expression of immune markers in the patients with obstructive sleep apnea/hypopnea syndrome. Eur Arch Otorhinolaryngol 276, 735–744 (2019). https://doi.org/10.1007/s00405-018-5219-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-018-5219-6

Keywords

Navigation