Advertisement

European Archives of Oto-Rhino-Laryngology

, Volume 275, Issue 11, pp 2719–2726 | Cite as

Clinical correlation of molecular (VEGF, FGF, PDGF, c-Myc, c-Kit, Ras, p53) expression in juvenile nasopharyngeal angiofibroma

  • Anupam MishraEmail author
  • Subhash Chandra Mishra
  • Ashoak Mani Tripathi
  • Amita Pandey
Rhinology

Abstract

Background

A molecular surrogate may exist for the clinical behaviour of juvenile nasopharyngeal angiofibroma (JNA).

Methods

In 9–14 cases, a ‘correlation’ of clinical behaviour with molecular expression (m-RNA expression through RT-PCR) of VEGF, FGF, PDGF, Ras, c-Myc, c-Kit and p53 was undertaken.

Results

A comparison of the two extremes of expressions characterized some specific clinical phenotypes for every marker except c-Myc. A higher FGF was associated with post-adolescent presentation, smaller tumour size, enhanced haemorrhage and recurrence. A higher c-Kit was associated with adolescents, rapid growth, skull base involvement and recurrence. Enhanced Ras was associated with post-adolescence, smaller tumour size, skull base involvement and recurrence. Enhanced p53 and PDGF were associated with adolescents, early presentation and rapid progression. Higher VEGF expression was associated with skull base involvement and enhanced haemorrhage.

Conclusion

This study is currently the only evidence revealing a clinical molecular association in JNA and larger multicentric studies need to be performed to show a statistical significance.

Keywords

Nasopharynx Angiofibroma VEGF FGF PDGF Ras C-Myc C-Kit P53 

Notes

Acknowledgements

The principal author would like to acknowledge Praveen Pandey from CDRI for his efforts in generating the necessary laboratory data and while the basic molecular expression values have been published in the laryngoscope, the current study exclusively correlates the clinical parameters.

Funding

None.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Supplementary material

405_2018_5110_MOESM1_ESM.doc (140 kb)
Supplementary material 1 (DOC 140 KB)
405_2018_5110_MOESM2_ESM.docx (11 kb)
Supplementary material 2 (DOCX 11 KB)

References

  1. 1.
    Schuon R, Brieger J, Heinrich UR, Roth Y, Szyfter W, Mann WJ (2007) Immunohistochemical analysis of growth mechanisms in juvenile angiofibroma. Eur Arch Otorhinolaryngol 264:389–394CrossRefGoogle Scholar
  2. 2.
    Schiff M, Gonzalez AM, Ong M, Baird A (1992) Juvenile nasopharyngeal angiofibroma contain an angiogenic growth factor: basic FGF. Laryngoscope 102:940–945CrossRefGoogle Scholar
  3. 3.
    Dillard DG, Cohen C, Muller S, Del Gaudio J, Reichman O, Parrish B et al (2000) Immunolocalization of activated transforming growth factor beta1 in juvenile nasopharyngeal angiofibroma. Arch Otolaryngol Head Neck Surg 126:723–725CrossRefGoogle Scholar
  4. 4.
    Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983–985CrossRefGoogle Scholar
  5. 5.
    Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M (1998) Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92:735–745CrossRefGoogle Scholar
  6. 6.
    Herzog B, Pellet-Many C, Britton G, Hartzoulakis B, Zachary IC (2011) VEGF binding to NRP1 is essential for VEGF stimulation of endothelial cell migration, complex formation between NRP1 and VEGFR2, and signaling via FAK Tyr407 phosphorylation. Mol Biol Cell 22:2766–2776CrossRefGoogle Scholar
  7. 7.
    Palmer BF, Clegg DJ (2014) Oxygen sensing and metabolic homeostasis. Mol Cell Endocrinol 397:51–58CrossRefGoogle Scholar
  8. 8.
    Matsumoto E, Sasaki S, Kinoshita H, Kito T, Ohta H, Konishi M et al (2013) Angiotensin II-induced cardiac hypertrophy and fibrosis are promoted in mice lacking Fgf16. Genes Cells 18:544–553CrossRefGoogle Scholar
  9. 9.
    Xiao L, Du Y, Shen Y, He Y, Zhao H, Li Z (2012) TGF-beta 1 induced fibroblast proliferation is mediated by the FGF-2/ERK pathway. Front Biosci (Landmark Ed) 17:2667–2674CrossRefGoogle Scholar
  10. 10.
    Warburton D (2012) Developmental responses to lung injury: repair or fibrosis. Fibrogenesis Tissue Repair 5:S2CrossRefGoogle Scholar
  11. 11.
    Gupte VV, Ramasamy SK, Reddy R, Lee J, Weinreb PH, Violette SM et al (2009) Overexpression of fibroblast growth factor-10 during both inflammatory and fibrotic phases attenuates bleomycin induced pulmonary fibrosis in mice. Am J Respir Crit Care Med 180:424–436CrossRefGoogle Scholar
  12. 12.
    Lemmon SK, Riley MC, Thomas KA, Hoover GA, Maciag T, Bradshaw RA (1982) Bovine fibroblast growth factor: comparison of brain and pituitary preparations. J Cell Biol 95:162–169CrossRefGoogle Scholar
  13. 13.
    Thomas KA, Rios-Candelore M, Gimenez-Gallego G, DiSalvo J, Bennett C, Rodkey J et al (1985) Pure brain-derived acidic fibroblast growth factor is a potent angiogenic vascular endothelial cell mitogen with sequence homology to interleukin 1. Proc Natl Acad Sci USA 82:6409–6413CrossRefGoogle Scholar
  14. 14.
    Schreiber AB, Kenney J, Kowalski WJ, Friesel R, Mehlman T, Maciag T (1985) Interaction of endothelial cell growth factor with heparin: characterization by receptor and antibody recognition. Proc Natl Acad Sci USA 82:6138–6142CrossRefGoogle Scholar
  15. 15.
    Schreiber AB, Kenney J, Kowalski J, Thomas KA, Gimenez-Gallego G, Rios-Candelore M et al (1985) A unique family of endothelial cell polypeptide mitogens: the antigenic and receptor cross-reactivity of bovine endothelial cell growth factor, brain-derived acidic fibroblast growth factor, and eye-derived growth factor-II. J Cell Biol 101:1623–1626CrossRefGoogle Scholar
  16. 16.
    Kumar V (2010) Robbins and coltran pathologic basis of disease. Elsevier, Beijing, pp 88–89 (ISBN: 978-1-4160-3121-5)Google Scholar
  17. 17.
    Demoulin JB, Montano-Almendras CP (2012) Platelet-derived growth factors and their receptors in normal and malignant hematopoiesis. Am J Blood Res 2:44–56PubMedPubMedCentralGoogle Scholar
  18. 18.
    Andrae J, Gallini R, Betsholtz C (2008) Role of platelet-derived growth factors in physiology and medicine. Genes Dev 22:1276–1312CrossRefGoogle Scholar
  19. 19.
    Hannink M, Donoghue DJ (1989) Structure and function of platelet-derived growth factor (PDGF) and related proteins. Biochim Biophys Acta 989:1–10PubMedGoogle Scholar
  20. 20.
    Heldin CH (1992) Structural and functional studies on platelet-derived growth factor. EMBO J 11:4251–4259CrossRefGoogle Scholar
  21. 21.
    Zhang PJ, Weber R, Liang H, Pasha TL, LiVolsi VA (2003) Growth factors and receptors in juvenile nasopharyngeal angiofibroma and nasal polyps. Arch Pathol Lab Med 127:1480–1484PubMedGoogle Scholar
  22. 22.
    Pauli J, Gundelach R, Vanelli-Rees A, Rees G, Campbell C, Dubey S et al (2008) Juvenile nasopharyngeal angiofibroma: an immunohistochemical characterisation of the stromal cell. Pathology 40:396–400CrossRefGoogle Scholar
  23. 23.
    Ribatti D, Ranieri G, Basile A, Azzariti A, Paradiso A, Vacca A (2012) Tumor endothelial markers as a target in cancer. Expert Opin Ther Targets 16:1215–1225CrossRefGoogle Scholar
  24. 24.
    Downward J (2003) Targeting RAS signaling pathways in cancer therapy. Nat Rev Cancer 3:11–22CrossRefGoogle Scholar
  25. 25.
    Lim KH, Baines AT, Fiordalisi JJ, Shipitsin M, Feig LA, Cox AD et al (2005) Activation of RalA is critical for Ras-induced tumorigenesis of human cells. Cancer Cell 7:533–545CrossRefGoogle Scholar
  26. 26.
    Hamad NM, Elconin JH, Karnoub AE, Bai W, Rich JN, Abraham RT,.et al (2002) Distinct requirements for Ras oncogenesis in human versus mouse cells. Genes Dev 16:2045–2057CrossRefGoogle Scholar
  27. 27.
    Paterson IC, Eveson JW, Prime SS (1996) Molecular changes in oral cancer may reflect aetiology and ethnic origin. Eur J Cancer B Oral Oncol 32:150–153CrossRefGoogle Scholar
  28. 28.
    Mishra A, Mishra SC (2016) Changing trends in the incidence of juvenile nasopharyngeal angiofibroma: seven decades of experience at King George’s Medical University, Lucknow, India. J Laryngol Otol 130:363–368CrossRefGoogle Scholar
  29. 29.
    Mishra A, Jaiswal R, Pandey A, Mishra SC (2018) Molecular interactions in juvenile nasopharyngeal angiofibroma: preliminary signature and relevant review. Eur Arch Otolaryngol (submitted)Google Scholar
  30. 30.
    Pandey P, Mishra A, Tripathi AM, Verma V, Trivedi R, Singh HP et al (2017) Current molecular profile of juvenile nasopharyngeal angiofibroma: first comprehensive study from India. Laryngoscope 127:e100–e106CrossRefGoogle Scholar
  31. 31.
    Mishra A, Mishra SC, Verma V, Singh HP, Kumar S, Tripathi AM et al (2016) In defence of transpalatal, transpalatal-circumaxillary (transpterygopalatine) and transpalatal-circumaxillary-sublabial approaches to lateral extensions of juvenile nasopharyngeal angiofibroma. J Laryngol Otol 130:462–473CrossRefGoogle Scholar
  32. 32.
    Radkowski D, McGill T, Healy GB, Ohlms L, Jones DT (1996) Angiofibroma: changes in staging and treatment. Arch Otolaryngol Head Neck Surg 122:122–129CrossRefGoogle Scholar
  33. 33.
    Mishra SC, Shukla GK, Bhatia N, Pant MC (1989) A rational classification of angiofibromas of the postnasal space. J Laryngol Otol 103:912–916CrossRefGoogle Scholar
  34. 34.
    Mishra A, Mishra SC, Pandey A (2017) Variations in molecular expressions of juvenile nasopharyngeal angiofibroma. J Laryngol Otol 131(9):752–759CrossRefGoogle Scholar
  35. 35.
    Mishra A, Verma V (2018) Implication of embolization in residual disease in lateral extension of juvenile nasopharyngeal angiofibroma. J Oral Biol Craniofacial Res (submitted)Google Scholar
  36. 36.
    Saylam G, Yucel OT, Sungur A, Onerci M (2006) Proliferation, angiogenesis and hormonal markers in juvenile nasopharyngeal angiofibroma. Int J Pediatr Otorhinolaryngol 70:227–234CrossRefGoogle Scholar
  37. 37.
    Brieger J, Wierzbicka M, Sokolov M, Roth Y, Szyfter W, Mann WJ (2004) Vessel density, proliferation and immunolocalization of vascular endothelial growth factor in juvenile nasopharyngeal angiofibromas. Arch Otolaryngol Head Neck Surg 130:727–731CrossRefGoogle Scholar
  38. 38.
    Arbiser ZK, Arbiser JL, Cohen C, Gal AA (2001) Neuroendocrine lung tumors: grade correlates with proliferation but not angiogenesis. Mod Pathol 14:1195–1199CrossRefGoogle Scholar
  39. 39.
    Juric G, Zarkovic N, Nola M, Tillian M, Jukić S (2001) The value of cell proliferation and angiogenesis in the prognostic assessment of ovarian granulosa cell tumors. Tumori 87:47–53CrossRefGoogle Scholar
  40. 40.
    Mishra A, Singh V, Verma V, Pandey S, Trivedi R, Singh HP et al (2016) Current status and Clinical correlation of beta-catenin in juvenile nasopharyngeal angiofibroma. J Laryngol Otol 30:1–7Google Scholar
  41. 41.
    Profumo V, Gandellini P (2013) MicroRNAs: cobblestones on the road to cancer metastasis. Crit Rev Oncog 18:341–355CrossRefGoogle Scholar
  42. 42.
    Pietras K, Pahler J, Bergers G, Hanahan D (2008) Functions of paracrine PDGF signalling in the proangiogenic tumor stroma revealed by pharmacological targeting. PLoS Med 5:e19CrossRefGoogle Scholar
  43. 43.
    Song S, Ewald AJ, Stallcup W, Werb Z, Bergers G (2005) PDGFRbþ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nat Cell Biol 7:870–879CrossRefGoogle Scholar
  44. 44.
    Dong J, Grunstein J, Tejada M, Peale F, Frantz G, Liang WC et al (2004) VEGF null cells require PDGFR alpha signaling mediated stromal fibroblast recruitment for tumorigenesis. EMBO J 23:2800–2810CrossRefGoogle Scholar
  45. 45.
    Nagai MA, Butugan O, Logullo A, Brentani MM (1996) Expression of growth factors, protooncogenes and p53 in nasopharyngeal angiofibromas. Laryngoscope 106:190–195CrossRefGoogle Scholar
  46. 46.
    López-Martin A, Ballestín C, Garcia-Carbonero R, Castaño A, Lopez-Ríos F, López-Encuentra A et al (2007) Prognostic value of Kit expression in small cell lung cancer. Lung Cancer 56:405–413CrossRefGoogle Scholar
  47. 47.
    Chau WK, Ip CK, Mak AS, Lai HC, Wong AS (2013) c-Kit mediates chemoresistance and tumor-initiating capacity of ovarian cancer cells through activation of Wnt/β-catenin-ATP-binding cassette G2 signaling. Oncogene 32:2767–2781CrossRefGoogle Scholar
  48. 48.
    Wiesner C, Nabha SM, Dos Santos EB, Yamamoto H, Meng H, Melchior SW et al (2008) c-Kit and its ligand stem cell factor: potential contribution to prostate cancer bone metastasis. Neoplasia 10:996–1003CrossRefGoogle Scholar
  49. 49.
    Cheng P, Chen H, Liu SR, Pu XY (2013) A ZC. SNPs in KIT and KITLG genes may be associated with oligospermia in Chinese population. Biomarkers 18:650–654CrossRefGoogle Scholar
  50. 50.
    Marcu KB, Bossone SA, Patel AJ (1992) Myc function and regulation. Annu Rev Biochem 61:809–860CrossRefGoogle Scholar
  51. 51.
    He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT et al (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512CrossRefGoogle Scholar
  52. 52.
    van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A et al (2002) The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111:241–250CrossRefGoogle Scholar
  53. 53.
    Sansom OJ, Reed KR, Hayes AJ, Ireland H, Brinkmann H, Newton IP et al (2004) Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation and migration. Genes Dev 18:1385–1390CrossRefGoogle Scholar
  54. 54.
    Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic Ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602CrossRefGoogle Scholar
  55. 55.
    Mitchell PJ, Perez-Nadales E, Malcolm DS, Lloyd AC (2003) Dissecting the contribution of p16(INK4A) and the Rb family to the Ras transformed phenotype. Mol Cell Biol 23:2530–2542CrossRefGoogle Scholar
  56. 56.
    Coutinho CM, Bassini AS, Gutie´rrez LG, Butugan O, Kowalski LP, Brentani MM et al (1999) Genetic alterations in Ki-ras and Ha-ras genes in juvenile nasopharyngeal angiofibromas and head and neck cancer. Sao Paulo Med J 117:113–120CrossRefGoogle Scholar
  57. 57.
    Schick B, Veldung B, Wemmert S, Jung V, Montenarh M, Meese E et al (2005) p53 and Her-2/neu in juvenile angiofibromas. Oncol Rep 13:453–457PubMedGoogle Scholar
  58. 58.
    Mishra A, Sachadeva M, Jain A, Shukla NM, Pandey A (2016) Human papilloma virus in juvenile nasopharyngeal angiofibroma: possible recent trend. Am J Otolaryngol Head Neck Med Surg 37:317–322Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of OtorhinolaryngologyKing George Medical UniversityLucknowIndia
  2. 2.Department of Obstetrics and GynaecologyKing George Medical UniversityLucknowIndia
  3. 3.Department of OtorhinolaryngologyNepalgunj Medical CollegeNepalgunjNepal

Personalised recommendations