European Archives of Oto-Rhino-Laryngology

, Volume 275, Issue 6, pp 1469–1475 | Cite as

Extramucosal pyriplasty without stenting for management of pyriform aperture stenosis

  • Remon Bazak
  • Ahmed Aly Ibrahim
  • Wael K. A. Hussein
  • Mustafa Mohamed Abdelnaby
  • Samy Elwany



The current management options of congenital pyriform aperture stenosis (CNPAS) are either conservative measures awaiting further growth of the bony nasal framework or surgical intervention that focuses on bone removal from the margin of the pyriform aperture (PA) without exposure of the nasolacrimal duct (NLD) followed by stenting. Recently, CT measurements of the nasal cavity in CNPAS have shed light that the site of maximal bony obstruction corresponds to the bony buttress encasing the NLD rather than the margin of the PA as initially thought. Herein, we present an extramucosal pyriplasty technique that can be used without stenting to enlarge the PA and achieve immediate and sustained relief of nasal obstruction.


Retrospective chart review of 4 patients with radiologically confirmed CNPAS who had undergone extramucosal pyriplasty without stenting during the period from 2012 to 2016.


Three patients were full term without any clinically detectable congenital anomaly. The fourth patient was preterm infant who needed ICU management. On computerized tomography scan, the PA width ranged from 5.8 to 7.1 mm with a mean of 6.4 mm while site of maximal stenosis ranged from 5.4 to 6.8 with a mean of 6 mm. Extramucosal pyriplasty relieved nasal obstruction and restored normal oral feeding in all patients. Postoperative follow-up endoscopy revealed an adequately patent airway with no scarring, granulation or restenosis.


Extramucosal pyriplasty with decompression of the NLD without stenting is a treatment modality for CNPAS that provides prompt sustainable relief of nasal obstruction and avoids the drawbacks of stenting and shortcomings of the current conservative methods.


Pyriform aperture Congenital Stenosis Neonatal Nasal Nasolacrimal duct Stenting 



No funding grants.

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consents were obtained from all individual participants included in the study.


  1. 1.
    Brown OE, Myer CM, Manning SC (1989) Congenital nasal pyriform aperture stenosis. Laryngoscope 99(1):86–91. CrossRefPubMedGoogle Scholar
  2. 2.
    Belden CJ, Mancuso AA, Schmalfuss IM (1999) CT features of congenital nasal piriform aperture stenosis: initial experience. Radiology 213(2):495–501. CrossRefPubMedGoogle Scholar
  3. 3.
    Reeves TD, Discolo CM, White DR (2013) Nasal cavity dimensions in congenital pyriform aperture stenosis. Int J Pediatr Otorhinolaryngol 77(11):1830–1832. CrossRefPubMedGoogle Scholar
  4. 4.
    Douglas B (1952) The relief of vestibular nasal obstruction by partial resection of the nasal process of the superior maxilla. Plast Reconstr Surg 9(1):42–51Google Scholar
  5. 5.
    Dawson GW (1919) Bony nasal growth. Proc R Soc Med 12:213–214PubMedPubMedCentralGoogle Scholar
  6. 6.
    Zinreich SJ, Mattox DE, Kennedy DW, Chisholm HL, Diffley DM, Rosenbaum AE (1988) Concha bullosa: CT evaluation. J Comput Assist Tomogr 12(5):778–784CrossRefPubMedGoogle Scholar
  7. 7.
    Arlis H, Ward RF (1992) Congenital nasal pyriform aperture stenosis. Isolated abnormality vs developmental field defect. Arch Otolaryngol Head Neck Surg 118(9):989–991CrossRefPubMedGoogle Scholar
  8. 8.
    Muenke M, Gurrieri F, Bay C, Yi DH, Collins AL, Johnson VP, Hennekam RC, Schaefer GB, Weik L, Lubinsky MS et al (1994) Linkage of a human brain malformation, familial holoprosencephaly, to chromosome 7 and evidence for genetic heterogeneity. Proc Natl Acad Sci USA 91(17):8102–8106CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Krol BJ, Hulka GF, Drake A (1998) Congenital nasal pyriform aperture stenosis in the monozygotic twin of a child with holoprosencephaly. Otolaryngol Head Neck Surg 118(5):679–681PubMedGoogle Scholar
  10. 10.
    Gonik NJ, Cheng J, Lesser M, Shikowitz MJ, Smith LP (2015) Patient selection in congenital pyriform aperture stenosis repair—14 year experience and systematic review of literature. Int J Pediatr Otorhinolaryngol 79(2):235–239. CrossRefPubMedGoogle Scholar
  11. 11.
    Visvanathan V, Wynne DM (2012) Congenital nasal pyriform aperture stenosis: a report of 10 cases and literature review. Int J Pediatr Otorhinolaryngol 76(1):28–30. CrossRefPubMedGoogle Scholar
  12. 12.
    Lee KS, Yang CC, Huang JK, Chen YC, Chang KC (2002) Congenital pyriform aperture stenosis: surgery and evaluation with three-dimensional computed tomography. Laryngoscope 112(5):918–921. CrossRefPubMedGoogle Scholar
  13. 13.
    Merea VS, Lee AH, Peron DL, Waldman EH, Grunstein E (2015) CPAS: Surgical approach with combined sublabial bone resection and inferior turbinate reduction without stents. Laryngoscope 125(6):1460–1464. CrossRefPubMedGoogle Scholar
  14. 14.
    Tate JR, Sykes J (2009) Congenital nasal pyriform aperture stenosis. Otolaryngol Clin North Am 42(3):521–525. CrossRefPubMedGoogle Scholar
  15. 15.
    Gunther L, Sari-Rieger A, Jablonka K, Rustemeyer J (2014) Clinical course and implications of congenital nasal pyriform stenosis and solitary median maxillary central incisor in a newborn: a case report. J Med Case Rep 8:215. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wine TM, Dedhia K, Chi DH (2014) Congenital nasal pyriform aperture stenosis: is there a role for nasal dilation? JAMA Otolaryngol Head Neck Surg 140(4):352–356. CrossRefPubMedGoogle Scholar
  17. 17.
    Wormald R, Hinton-Bayre A, Bumbak P, Vijayasekaran S (2015) Congenital nasal pyriform aperture stenosis 5.7 mm or less is associated with surgical intervention: a pooled case series. Int J Pediatr Otorhinolaryngol 79(11):1802–1805. CrossRefPubMedGoogle Scholar
  18. 18.
    Collins B, Powitzky R, Enix J, Digoy GP (2013) Congenital nasal pyriform aperture stenosis: conservative management. Ann Otol Rhinol Laryngol 122(10):601–604PubMedGoogle Scholar
  19. 19.
    Miller MJ, Martin RJ, Carlo WA, Fouke JM, Strohl KP, Fanaroff AA (1985) Oral breathing in newborn infants. J Pediatr 107(3):465–469CrossRefPubMedGoogle Scholar
  20. 20.
    Voegels RL, Chung D, Lessa MM, Lorenzetti FT, Goto EY, Butugan O (2002) Bilateral congenital choanal atresia in a 13-year-old patient. Int J Pediatr Otorhinolaryngol 65(1):53–57CrossRefPubMedGoogle Scholar
  21. 21.
    Bakir S, Ozbay M, Kinis V, Gun R, Yorgancilar E (2014) [Bilateral choanal atresia in adults]. Kulak Burun Bogaz Ihtis Derg 24(2):114–117. CrossRefPubMedGoogle Scholar
  22. 22.
    Lee JJ, Bent JP, Ward RF (2001) Congenital nasal pyriform aperture stenosis: non-surgical management and long-term analysis. Int J Pediatr Otorhinolaryngol 60(2):167–171CrossRefPubMedGoogle Scholar
  23. 23.
    Burstein FD, Cohen SR (1995) Piriform aperture stenosis: a rare cause of neonatal airway obstruction. Ann Plast Surg 34(1):56–58CrossRefPubMedGoogle Scholar
  24. 24.
    Sitapara JB, Mahida JB, McEvoy TP, Elmaraghy CA, Deans KJ, Minneci PC, Grischkan JM (2015) Using the maxillary-nasal angle to evaluate congenital nasal pyriform aperture stenosis. JAMA Otolaryngol Head Neck Surg 141(6):539–542. CrossRefPubMedGoogle Scholar
  25. 25.
    Sesenna E, Leporati M, Brevi B, Oretti G, Ferri A (2012) Congenital nasal pyriform aperture stenosis: diagnosis and management. Ital J Pediatr 38:28. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of OtolaryngologyAlexandria Faculty of MedicineAlexandriaEgypt

Personalised recommendations