Archives of Gynecology and Obstetrics

, Volume 297, Issue 1, pp 49–60 | Cite as

Maternal sepsis in the era of genomic medicine




Maternal sepsis remains one of the leading causes of direct and indirect maternal mortality both in high- and low-income environments. In the last two decades, systems biology approaches, based on ‘-omics’ technologies, have started revolutionizing the diagnosis and management of the septic syndrome. The scope of this narrative review is to present an overview of the basic ‘-omics’ technologies, exemplified by cases relevant to maternal sepsis.


Narrative review of the new ‘-omics’ technologies based on a detailed review of the literature.


After presenting the main ‘omics’ technologies, we discuss their limitations and the need for integrated approaches that encompass research efforts across multiple ‘-omics’ layers in the ‘-omics’ cascade between the genome and the phenome.


Systems biology approaches are revolutionizing the research landscape in maternal sepsis. There is a need for increased awareness, from the side of health practitioners, as a requirement for the effective implementation of the new technologies in the research and clinical practice in maternal sepsis.


Maternal sepsis Genomic medicine Systems biology Integrated ‘-omics’ 


Author contributions

CK: conception, project development, literature research and manuscript writing. NE: conception, project development and manuscript writing/editing. AB: conception and manuscript editing. FK: conception and manuscript editing.

Compliance with ethical standards



Conflict of interest

All authors declare that they have no conflict of interest related to the article.

Ethical approval

This review article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Geroulanos S, Douka ET (2006) Historical perspective of the word “sepsis”. Intensive Care Med 32:2077PubMedCrossRefGoogle Scholar
  2. 2.
    Funk DJ, Parrillo JE, Kumar A (2009) Sepsis and septic shock: a history. Crit Care Clin 25:83–101. PubMedCrossRefGoogle Scholar
  3. 3.
    Tiru B, DiNino EK, Orenstein A, Mailloux PT, Pesaturo A, Gupta A, McGee WT (2015) The economic and humanistic burden of severe sepsis. Pharmacoeconomics 33:925–937. PubMedCrossRefGoogle Scholar
  4. 4.
    Reinhart K, Daniels R, Kissoon N, Machado FR, Schachter RD, Finfer S (2017) Recognizing sepsis as a global health priority—a WHO resolution. N Engl J Med. (Epub ahead of print) PubMedGoogle Scholar
  5. 5.
    Fleischmann C, Scherag A, Adhikari NK, Hartog CS, Tsaganos T, Schlattmann P, Angus DC, Reinhart K, International Forum of Acute Care Trialists (2016) Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med 193:259–272. PubMedCrossRefGoogle Scholar
  6. 6.
    Kramer HMC, Schutte JM, Zwart JJ, Schuitemaker NW, Steegers EA, van Roosmalen J (2009) Maternal mortality and severe morbidity from sepsis in the Netherlands. Acta Obstet Gynecol Scand 88:647–653PubMedCrossRefGoogle Scholar
  7. 7.
    Acosta CD, Knight M, Lee HC, Kurinczuk JJ, Gould JB, Lyndon A (2013) The continuum of maternal sepsis severity: incidence and risk factors in a population-based cohort study. PLoS One 8:e67175. PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Bauer ME, Bateman BT, Bauer ST, Shanks AM, Mhyre JM (2013) Maternal sepsis mortality and morbidity during hospitalization for delivery: temporal trends and independent associations for severe sepsis. Anesth Analg 117:944–950. PubMedCrossRefGoogle Scholar
  9. 9.
    Oud L, Watkins P (2015) Evolving trends in the epidemiology, resource utilization, and outcomes of pregnancy-associated severe sepsis: a population-based cohort study. J Clin Med Res 7:400–416. PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Knowles SJ, O’Sullivan NP, Meenan AM, Hanniffy R, Robson M (2015) Maternal sepsis incidence, aetiology and outcome for mother and fetus: a prospective study. BJOG 122:663–671. PubMedCrossRefGoogle Scholar
  11. 11.
    Al-Ostad G, Kezouh A, Spence AR, Abenhaim HA (2015) Incidence and risk factors of sepsis mortality in labor, delivery and after birth: population-based study in the USA. J Obstet Gynaecol Res 41:1201–1206. PubMedCrossRefGoogle Scholar
  12. 12.
    Waterstone W, Bewley S, Wolfe C (2001) Incidence and predictors of severe obstetric morbidity: case–control study. BMJ 322:1089–1094PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Acosta CD, Bhattacharya S, Tuffnell D, Kurinczuk JJ, Knight M (2012) Maternal sepsis: a Scottish population-based case-control study. BJOG 119:474–483. PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Centre for Maternal and Child Enquiries (CMACE) (2011) Saving mothers’ lives: reviewing maternal deaths to make motherhood safer: 2006–08. The eighth report on confidential enquiries into maternal deaths in the United Kingdom. BJOG 118(Suppl. 1):1–203Google Scholar
  15. 15.
    Paruk F (2008) Infection in obstetric critical care. Best Pract Res Clin Obstet Gynaecol 22:865–883. PubMedCrossRefGoogle Scholar
  16. 16.
    Oud L (2016) Mortality associated with severe sepsis among age-similar women with and without pregnancy-associated hospitalization in Texas: a population-based study. Med Sci Monit 22:1976–1986PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Dolea C, Stein C (2003) Global burden of maternal sepsis in the year 2000. Evidence and information for policy (EIP), World Health Organization, Geneva, July 2003. Accessed 17 July 2017
  18. 18.
    Cristina Rossi A, Mullin P (2012) The etiology of maternal mortality in developed countries: a systematic review of literature. Arch Gynecol Obstet 285:1499–1503. PubMedCrossRefGoogle Scholar
  19. 19.
    Say L, Chou D, Gemmill A, Tunçalp Ö, Moller AB, Daniels J, Gülmezoglu AM, Temmerman M, Alkema L (2014) Global causes of maternal death: a WHO systematic analysis. Lancet Glob Health 2:e323–e333. PubMedCrossRefGoogle Scholar
  20. 20.
    Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC (2016) The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315:801–810PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Angus DC, Seymour CW, Coopersmith CM, Deutschman CS, Klompas M, Levy MM, Martin GS, Osborn TM, Rhee C, Watson RS (2016) A framework for the development and interpretation of different sepsis definitions and clinical criteria. Crit Care Med 44(3):e113–e121. PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Chaudhary T, Hohenstein C, Bayer O (2014) The golden hour of sepsis: initial therapy should start in the prehospital setting. Med Klin Intensivmed Notfmed 109:104–108. PubMedCrossRefGoogle Scholar
  23. 23.
    Finkelsztein EJ, Jones DS, Ma KC, Pabón MA, Delgado T, Nakahira K, Arbo JE, Berlin DA, Schenck EJ, Choi AM, Siempos II (2017) Comparison of qSOFA and SIRS for predicting adverse outcomes of patients with suspicion of sepsis outside the intensive care unit. Crit Care 21:73. PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Rhee C, Klompas M (2017) New sepsis and septic shock definitions: clinical implications and controversies. Infect Dis Clin North Am. (Epub ahead of print) PubMedGoogle Scholar
  25. 25.
    Hwang SY, Jo IJ, Lee SU, Lee TR, Yoon H, Cha WC, Sim MS, Shin TG (2017) Low accuracy of positive qSOFA criteria for predicting 28-day mortality in critically ill septic patients during the early period after emergency department presentation. Ann Emerg Med. (Epub ahead of print) Google Scholar
  26. 26.
    Bonet M, Nogueira Pileggi V, Rijken MJ, Coomarasamy A, Lissauer D, Souza JP, Gülmezoglu AM (2017) Towards a consensus definition of maternal sepsis: results of a systematic review and expert consultation. Reprod Health 14:67. PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Global Maternal and Neonatal Sepsis Initiative Working Group. Electronic address: (2017) The Global Maternal And Neonatal Sepsis Initiative: a call for collaboration and action by 2030. Lancet Glob Health 5:e390–e391. CrossRefGoogle Scholar
  28. 28.
    Edwards SE, Grobman WA, Lappen JR, Winter C, Fox R, Lenguerrand E, Draycott T (2015) Modified obstetric early warning scoring systems (MOEWS): validating the diagnostic performance for severe sepsis in women with chorioamnionitis. Am J Obstet Gynecol 212:536.e1–536.e8. CrossRefGoogle Scholar
  29. 29.
    Ryan HM, Jones MA, Payne BA, Sharma S, Hutfield AM, Lee T, Ukah UV, Walley KR, Magee LA, von Dadelszen P (2017) Validating the performance of the modified early obstetric warning system multivariable model to predict maternal intensive care unit admission. J Obstet Gynaecol Can. (Epub ahead of print) Google Scholar
  30. 30.
    Aarvold AB, Ryan HM, Magee LA, von Dadelszen P, Fjell C, Walley KR (2017) Multiple organ dysfunction score is superior to the obstetric-specific sepsis in obstetrics score in predicting mortality in septic obstetric patients. Crit Care Med 45:e49–e57PubMedCrossRefGoogle Scholar
  31. 31.
    Knight M, Kenyon S, Brocklehurst P, Neilson J, Shakespeare J, Kurinczuk JJ, On behalf of MBRRACE—UK (eds) (2014) Saving lives, Improving mothers’ care—lessons learned to inform future maternity care from the UK and Ireland confidential enquiries into maternal deaths and morbidity 2009–12. National Perinatal Epidemiology Unit, University of Oxford, OxfordGoogle Scholar
  32. 32.
    Brand A, Evangelatos N, Satyamoorthy K (2016) Public Health Genomics: the essential part for good governance in public health. Int J Public Health 61:401–403. PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Christaki E, Giamarellos-Bourboulis EJ (2014) The beginning of personalized medicine in sepsis: small steps to a bright future. Clin Genet 86:56–61. PubMedCrossRefGoogle Scholar
  34. 34.
    Devault AM, Mortimer TD, Kitchen A, Kiesewetter H, Enk JM, Golding GB, Southon J, Kuch M, Duggan AT, Aylward W, Gardner SN, Allen JE, King AM, Wright G, Kuroda M, Kato K, Briggs DE, Fornaciari G, Holmes EC, Poinar HN, Pepperell CS (2017) A molecular portrait of maternal sepsis from Byzantine Troy. Elife 10:6. Google Scholar
  35. 35.
    Sørensen TI, Nielsen GG, Andersen PK, Teasdale TW (1988) Genetic and environmental influences on premature death in adult adoptees. N Engl J Med 318:727–732PubMedCrossRefGoogle Scholar
  36. 36.
    Green ED, Watson JD, Collins FS (2015) Human Genome Project: twenty-five years of big biology. Nature 526:29–31. PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Heather JM, Chain B (2016) The sequence of sequencers: the history of sequencing DNA. Genomics 107:1–8. PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    David VL, Ercisli MF, Rogobete AF, Boia ES, Horhat R, Nitu R, Diaconu MM, Pirtea L, Ciuca I, Horhat D, Horhat FG, Licker M, Popovici SE, Tanasescu S, Tataru C (2017) Early prediction of sepsis incidence in critically ill patients using specific genetic polymorphisms. Biochem Genet 55:193–203. PubMedCrossRefGoogle Scholar
  39. 39.
    Davis SM, Clark EA, Nelson LT, Silver RM (2010) The association of innate immune response gene polymorphisms and puerperal group A streptococcal sepsis. Am J Obstet Gynecol. 202:308.e1–308.e8. CrossRefGoogle Scholar
  40. 40.
    Guiral E, Sáez-López E, Bosch J, Goncé A, López M, Sanz S, Vila J, Soto SM (2015) Antimicrobial resistance and virulence characterization among Escherichia coli clinical isolates causing severe obstetric infections in pregnant women. J Clin Microbiol 53:1745–1747. PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Ben Zakour NL, Venturini C, Beatson SA, Walker MJ (2012) Analysis of a Streptococcus pyogenes puerperal sepsis cluster by use of whole-genome sequencing. J Clin Microbiol 50:2224–2228. PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Turner CE, Dryden M, Holden MT, Davies FJ, Lawrenson RA, Farzaneh L, Bentley SD, Efstratiou A, Sriskandan S (2013) Molecular analysis of an outbreak of lethal postpartum sepsis caused by Streptococcus pyogenes. J Clin Microbiol 51:2089–2095. PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Villar J, Maca-Meyer N, Pérez-Méndez L, Flores C (2004) Bench-to-bedside review: understanding genetic predisposition to sepsis. Crit Care 8:180–189PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    de Aguiar BB, Girardi I, Paskulin DD, de Franca E, Dornelles C, Dias FS, Bonorino C, Alho CS (2008) CD14 expression in the first 24 h of sepsis: effect of −260C!T CD14 SNP. Immunol Investig 37:752–769CrossRefGoogle Scholar
  45. 45.
    Nelson CL, Pelak K, Podgoreanu MV, Ahn SH, Scott WK, Allen AS, Cowell LG, Rude TH, Zhang Y, Tong A, Ruffin F, Sharma-Kuinkel BK, Fowler VG Jr (2014) A genome-wide association study of variants associated with acquisition of Staphylococcus aureus bacteremia in a healthcare setting. BMC Infect Dis 14:83. PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Winkler TW, Day FR, Croteau-Chonka DC, Wood AR, Locke AE, Mägi R, Ferreira T, Fall T, Graff M, Justice AE, Luan J, Gustafsson S, Randall JC, Vedantam S, Workalemahu T, Kilpeläinen TO, Scherag A, Esko T, Kutalik Z, Heid IM, Loos RJ (2014) Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Quality control and conduct of genome-wide association meta-analyses. Nat Protoc 9:1192–1212. PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Manrai AK, Funke BH, Rehm HL, Olesen MS, Maron BA, Szolovits P, Margulies DM, Loscalzo J, Kohane IS (2016) Genetic misdiagnoses and the potential for health disparities. N Engl J Med 375:655–665. PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Ebrahim S (2012) Epigenetics: the next big thing. Int J Epidemiol 41:1–3PubMedCrossRefGoogle Scholar
  49. 49.
    Tendl KA, Schulz SM, Mechtler TP, Bohn A, Metz T, Greber-Platzer S, Kasper DC, Herkner KR, Item CB (2013) DNA methylation pattern of CALCA in preterm neonates with bacterial sepsis as a putative epigenetic biomarker. Epigenetics 8:1261–1267. PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Weiterer S, Uhle F, Lichtenstern C, Siegler BH, Bhuju S, Jarek M, Bartkuhn M, Weigand MA (2015) Sepsis induces specific changes in histone modification patterns in human monocytes. PLoS One 10:e0121748. PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Gupta H, Chaudhari S, Rai A, Bhat S, Sahu PK, Hande MH, D’Souza SC, Shashikiran U, Satyamoorthy K (2017) Genetic and epigenetic changes in host ABCB1 influences malaria susceptibility to Plasmodium falciparum. PLoS One 12:e0175702. PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Prauchner CA (2017) Oxidative stress in sepsis: pathophysiological implications justifying antioxidant co-therapy. Burns 43:471–485. PubMedCrossRefGoogle Scholar
  53. 53.
    Essandoh K, Fan GC (2014) Role of extracellular and intracellular microRNAs in sepsis. Biochim Biophys Acta 1842:2155–2162. PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Goetzl L, Manevich Y, Roedner C, Praktish A, Hebbar L, Townsend DM (2010) Maternal and fetal oxidative stress and intrapartum term fever. Am J Obstet Gynecol 202:363.e1–363.e5. CrossRefGoogle Scholar
  55. 55.
    Lahiri DK, Maloney B (2012) Gene × environment interaction by a longitudinal epigenome-wide association study (LEWAS) overcomes limitations of genome-wide association study (GWAS). Epigenomics 4:685–699. PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Bataille A, Galichon P, Ziliotis MJ, Sadia I, Hertig A (2015) Epigenetic changes during sepsis: on your marks! Crit Care 19:358. PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Wong HR (2012) Clinical review: sepsis and septic shock—the potential of gene arrays. Crit Care 16:204. PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Casamassimi A, Federico A, Rienzo M, Esposito S, Ciccodicola A (2017) Transcriptome profiling in human diseases: new advances and perspectives. Int J Mol Sci 18:1652. PubMedCentralCrossRefGoogle Scholar
  59. 59.
    Chim SSC, Wong KKW, Chung CYL, Lam SKW, Kwok JSL, Lai CY, Cheng YKY, Hui ASY, Meng M, Chan OK, Tsui SKW, Lee KY, Chan TF, Leung TY (2017) Systematic selection of reference genes for the normalization of circulating RNA transcripts in pregnant women based on RNA-seq data. Int J Mol Sci 18:1709. PubMedCentralCrossRefGoogle Scholar
  60. 60.
    Scicluna BP, Klein Klouwenberg PM, van Vught LA, Wiewel MA, Ong DS, Zwinderman AH, Franitza M, Toliat MR, Nürnberg P, Hoogendijk AJ, Horn J, Cremer OL, Schultz MJ, Bonten MJ, van der Poll T (2015) A molecular biomarker to diagnose community-acquired pneumonia on intensive care unit admission. Am J Respir Crit Care Med 192:826–835. PubMedCrossRefGoogle Scholar
  61. 61.
    Burnham KL, Davenport EE, Radhakrishnan J, Humburg P, Gordon AC, Hutton P, Svoren-Jabalera E, Garrard C, Hill AVS, Hinds CJ, Knight JC (2017) Shared and distinct aspects of the sepsis transcriptomic response to fecal peritonitis and pneumonia. Am J Respir Crit Care Med 196:328–339. PubMedCrossRefGoogle Scholar
  62. 62.
    Almansa R, Heredia-Rodríguez M, Gomez-Sanchez E, Andaluz-Ojeda D, Iglesias V, Rico L, Ortega A, Gomez-Pesquera E, Liu P, Aragón M, Eiros JM, Jiménez-Sousa MÁ, Resino S, Gómez-Herreras I, Bermejo-Martín JF, Tamayo E (2015) Transcriptomic correlates of organ failure extent in sepsis. J Infect 70:445–456. PubMedCrossRefGoogle Scholar
  63. 63.
    Balofsky A, Fedarau M (2016) Renal failure in pregnancy. Crit Care Clin 32:73–83. PubMedCrossRefGoogle Scholar
  64. 64.
    Madan I, Than NG, Romero R, Chaemsaithong P, Miranda J, Tarca AL, Bhatti G, Draghici S, Yeo L, Mazor M, Hassan SS, Chaiworapongsa T (2014) The peripheral whole-blood transcriptome of acute pyelonephritis in human pregnancya. J Perinat Med 42:31–53. PubMedCrossRefGoogle Scholar
  65. 65.
    Wilkins M (2009) Proteomics data mining. Expert Rev Proteomics 6:599–603. PubMedCrossRefGoogle Scholar
  66. 66.
    Sharma NK, Salomao R (2017) Sepsis through the eyes of proteomics: the progress in the last decade. Shock. 47(1S Suppl 1):17–25PubMedCrossRefGoogle Scholar
  67. 67.
    Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R, Madugundu AK, Kelkar DS, Isserlin R, Jain S, Thomas JK, Muthusamy B, Leal-Rojas P, Kumar P, Sahasrabuddhe NA, Balakrishnan L, Advani J, George B, Renuse S, Selvan LD, Patil AH, Nanjappa V, Radhakrishnan A, Prasad S, Subbannayya T, Raju R, Kumar M, Sreenivasamurthy SK, Marimuthu A, Sathe GJ, Chavan S, Datta KK, Subbannayya Y, Sahu A, Yelamanchi SD, Jayaram S, Rajagopalan P, Sharma J, Murthy KR, Syed N, Goel R, Khan AA, Ahmad S, Dey G, Mudgal K, Chatterjee A, Huang TC, Zhong J, Wu X, Shaw PG, Freed D, Zahari MS, Mukherjee KK, Shankar S, Mahadevan A, Lam H, Mitchell CJ, Shankar SK, Satishchandra P, Schroeder JT, Sirdeshmukh R, Maitra A, Leach SD, Drake CG, Halushka MK, Prasad TS, Hruban RH, Kerr CL, Bader GD, Iacobuzio-Donahue CA, Gowda H, Pandey A (2014) A draft map of the human proteome. Nature 509:575–581. PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Garcia-Obregon S, Azkargorta M, Seijas I, Pilar-Orive J, Borrego F, Elortza F, Boyano MD, Astigarraga I (2017) Identification of a panel of serum protein markers in early stage of sepsis and its validation in a cohort of patients. J Microbiol Immunol Infect. (Epub ahead of print) PubMedGoogle Scholar
  69. 69.
    Kuusela P, Saraswat M, Joenväärä S, Kaartinen J, Järvinen A, Renkonen R (2017) Changes in plasma protein levels as an early indication of a bloodstream infection. PLoS One 12:e0172987. PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Buhimschi IA, Buhimschi CS (2012) Proteomics/diagnosis of chorioamnionitis and of relationships with the fetal exposome. Semin Fetal Neonatal Med 17:36–45. PubMedCrossRefGoogle Scholar
  71. 71.
    Gravett MG, Novy MJ, Rosenfeld RG, Reddy AP, Jacob T, Turner M, McCormack A, Lapidus JA, Hitti J, Eschenbach DA, Roberts CT Jr, Nagalla SR (2004) Diagnosis of intra-amniotic infection by proteomic profiling and identification of novel biomarkers. JAMA 292:462–469 (Erratum in: JAMA. 2004 Nov;292(19):2340) PubMedCrossRefGoogle Scholar
  72. 72.
    Buhimschi IA, Buhimschi CS (2010) The role of proteomics in the diagnosis of chorioamnionitis and early-onset neonatal sepsis. Clin Perinatol 37:355–374. PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Serkova NJ, Standiford TJ, Stringer KA (2011) The emerging field of quantitative blood metabolomics for biomarker discovery in critical illnesses. Am J Respir Crit Care Med 184:647–655. PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Eckerle M, Ambroggio L, Puskarich MA, Winston B, Jones AE, Standiford TJ, Stringer KA (2017) Metabolomics as a driver in advancing precision medicine in sepsis. Pharmacotherapy. (Epub ahead of print) PubMedGoogle Scholar
  75. 75.
    Holmes E, Wilson ID, Nicholson JK (2008) Metabolic phenotyping in health and disease. Cell 134:714–717PubMedCrossRefGoogle Scholar
  76. 76.
    Antcliffe D, Gordon AC (2016) Metabonomics and intensive care. Crit Care 20:68PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    The Human Metabolome Database. Accessed 26 Aug 2017
  78. 78.
    Kamisoglu K, Haimovich B, Calvano SE, Coyle SM, Corbett SA, Langley RJ, Kingsmore SF, Androulakis IP (2015) Human metabolic response to systemic inflammation: assessment of the concordance between experimental endotoxemia and clinical cases of sepsis/SIRS. Crit Care 19:71. PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Kauppi AM, Edin A, Ziegler I, Mölling P, Sjöstedt A, Gylfe Å, Strålin K, Johansson A (2016) Metabolites in blood for prediction of bacteremic sepsis in the emergency room. PLoS One 11:e0147670. PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Leite HP, de Lima LF (2016) Metabolic resuscitation in sepsis: a necessary step beyond the hemodynamic? J Thorac Dis 8:E552–E557. PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Rouse DJ, Keimig TW, Riley LE, Letourneau AR, Platt MY (2016) CASE records of the Massachusetts General Hospital. Case 16-2016. A 31-year-old pregnant woman with fever. N Engl J Med 374:2076–2083. PubMedCrossRefGoogle Scholar
  82. 82.
    Veenstra TD (2012) Metabolomics: the final frontier? Genome Med 4:40PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Langley RJ, Wong HR (2017) Early diagnosis of sepsis: is an integrated omics approach the way forward? Mol Diagn Ther. (Epub ahead of print) PubMedGoogle Scholar
  84. 84.
    Van Regenmortel MH (2004) Reductionism and complexity in molecular biology. Scientists now have the tools to unravel biological and overcome the limitations of reductionism. EMBO Rep 5:1016–1020PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Liu T, Yu L, Liu L, Li H, Li Y (2015) Comparative transcriptomes and EVO-DEVO studies depending on next generation sequencing. Comput Math Methods Med 2015:896176. PubMedPubMedCentralGoogle Scholar
  86. 86.
    Scott MC (2017) Defining and diagnosing sepsis. Emerg Med Clin North Am 35:1–9. PubMedCrossRefGoogle Scholar
  87. 87.
    Angus DC, van der Poll T (2013) Severe sepsis and septic shock. N Engl J Med 369:840–851. (Erratum. In: N Engl J Med. 2013 Nov 21;369(21):2069) PubMedCrossRefGoogle Scholar
  88. 88.
    Chousterman BG, Swirski FK, Weber GF (2017) Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol 39:517–528. PubMedCrossRefGoogle Scholar
  89. 89.
    van der Poll T, Opal SM (2008) Host–pathogen interactions in sepsis. Lancet Infect Dis. 8:32–43PubMedCrossRefGoogle Scholar
  90. 90.
    Galvão A, Braga AC, Gonçalves DR, Guimarães JM, Braga J (2016) Sepsis during pregnancy or the postpartum period. J Obstet Gynaecol 36:735–743PubMedCrossRefGoogle Scholar
  91. 91.
    Nahmias AJ, Schollin J, Abramowsky C (2011) Evolutionary-developmental (evo-devo) perspectives on immune system interactions among the pregnant woman, placenta, and fetus, and responses to sexually transmitted infectious agents. Ann N Y Acad Sci 1230:25–47. PubMedCrossRefGoogle Scholar
  92. 92.
    de Man YA, Dolhain RJ, van de Geijn FE, Willemsen SP, Hazes JM (2008) Disease activity of rheumatoid arthritis during pregnancy: results from a nationwide prospective study. Arthritis Rheum 59:1241–1248. PubMedCrossRefGoogle Scholar
  93. 93.
    Robinson DP, Klein SL (2012) Pregnancy and pregnancy-associated hormones alter immune responses and disease pathogenesis. Horm Behav 62:263–271. PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Angele MK, Frantz MC, Chaudry ICH (2006) Gender and sex hormones influence the response to trauma and sepsis: potential therapeutic approaches. Clinics (Sao Paulo) 61:479–488CrossRefGoogle Scholar
  95. 95.
    Adrie C, Azoulay E, Francais A, Clec’h C, Darques L, Schwebel C, Nakache D, Jamali S, Goldgran-Toledano D, Garrouste-Orgeas M, Timsit JF (2007) OutcomeRea Study Group. Influence of gender on the outcome of severe sepsis: a reappraisal. Chest 132:1786–1793PubMedCrossRefGoogle Scholar
  96. 96.
    Chandra R, Federici S, Németh ZH, Csóka B, Thomas JA, Donnelly R, Spolarics Z (2014) Cellular mosaicism for X-linked polymorphisms and IRAK1 expression presents a distinct phenotype and improves survival following sepsis. J Leukoc Biol 95:497–507. PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Sweeney TE, Wong HR, Khatri P (2016) Robust classification of bacterial and viral infections via integrated host gene expression diagnostics. Sci Transl Med 8:346ra91. PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Langley RJ, Tipper JL, Bruse S, Baron RM, Tsalik EL, Huntley J, Rogers AJ, Jaramillo RJ, O’Donnell D, Mega WM, Keaton M, Kensicki E, Gazourian L, Fredenburgh LE, Massaro AF, Otero RM, Fowler VG Jr, Rivers EP, Woods CW, Kingsmore SF, Sopori ML, Perrella MA, Choi AM, Harrod KS (2014) Integrative “omic” analysis of experimental bacteremia identifies a metabolic signature that distinguishes human sepsis from systemic inflammatory response syndromes. Am J Respir Crit Care Med 190:445–455. PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Ko DC, Gamazon ER, Shukla KP, Pfuetzner RA, Whittington D, Holden TD, Brittnacher MJ, Fong C, Radey M, Ogohara C, Stark AL, Akey JM, Dolan ME, Wurfel MM, Miller SI (2012) Functional genetic screen of human diversity reveals that a methionine salvage enzyme regulates inflammatory cell death. Proc Natl Acad Sci USA 109:E2343–E2352. PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Mary C, Duek P, Salleron L, Tienz P, Bumann D, Bairoch A, Lane L (2012) Functional identification of APIP as human mtnB, a key enzyme in the methionine salvage pathway. PLoS One 7:e52877. PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Wang L, Ko ER, Gilchrist JJ, Pittman KJ, Rautanen A, Pirinen M, Thompson JW, Dubois LG, Langley RJ, Jaslow SL, Salinas RE, Rouse DC, Moseley MA, Mwarumba S, Njuguna P, Mturi N, Wellcome Trust Case Control Consortium 2; Kenyan Bacteraemia Study Group, Williams TN, Scott JA, Hill AV, Woods CW, Ginsburg GS, Tsalik EL, Ko DC (2017) Human genetic and metabolite variation reveals that methylthioadenosine is a prognostic biomarker and an inflammatory regulator in sepsis. Sci Adv. 3:e1602096. PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Balasubramanian D, Ohneck EA, Chapman J, Weiss A, Kim MK, Reyes-Robles T, Zhong J, Shaw LN, Lun DS, Ueberheide B, Shopsin B, Torres VJ (2016) Staphylococcus aureus coordinates leukocidin expression and pathogenesis by sensing metabolic fluxes via RpiRc. MBio 7:e00818-16. PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Allegra S, Fatiguso G, Baietto L, Corcione S, Favata F, Ariaudo A, Pagani N, Ranieri VM, De Rosa FG, Di Perri G, D’Avolio A (2017) Pharmacogenomic influence on sepsis outcome in critically ill patients. Infez Med 25:45–49PubMedGoogle Scholar
  104. 104.
    Wang Y, Li X, Jiang L, Han W, Xie X, Jin Y, He X, Wu R (2017) Novel mutation sites in the development of vancomycin- intermediate resistance in Staphylococcus aureus. Front Microbiol 7:2163. PubMedPubMedCentralGoogle Scholar
  105. 105.
    Dong X, Jin Y, Ming D, Li B, Dong H, Wang L, Wang T, Wang D (2017) CRISPR/dCas9-mediated inhibition of gene expression in Staphylococcus aureus. J Microbiol Methods 139:79–86. PubMedCrossRefGoogle Scholar
  106. 106.
    Kamisoglu K, Acevedo A, Almon RR, Coyle S, Corbett S, Dubois DC, Nguyen TT, Jusko WJ, Androulakis IP (2017) Understanding physiology in the continuum: integration of information from multiple -omics levels. Front Pharmacol 8:91. PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Horgan D, Jansen M, Leyens L, Lal JA, Sudbrak R, Hackenitz E, Bußhoff U, Ballensiefen W, Brand A (2014) An index of barriers for the implementation of personalised medicine and pharmacogenomics in Europe. Public Health Genom 17:287–298. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Obstetrics and Perinatal MedicineKlinik HallerwieseNurembergGermany
  2. 2.Intensive Care Medicine Unit, Department of Respiratory Medicine, Allergology and Sleep MedicineParacelsus Medical UniversityNurembergGermany
  3. 3.UNU-MERIT (Maastricht Economic and Social Research Institute on Innovation and Technology)Maastricht UniversityMaastrichtThe Netherlands
  4. 4.Public Health Genomics, Department International HealthMaastricht UniversityMaastrichtThe Netherlands
  5. 5.Professorial Fellow, UNU-MERIT (Maastricht Economic and Social Research Institute on Innovation and Technology)Maastricht UniversityMaastrichtThe Netherlands
  6. 6.Dr. TMA Pai Endowed Chair Public Health GenomicsManipal UniversityManipalIndia

Personalised recommendations