Skip to main content

Advertisement

Log in

Is prolactin a negative neuroendocrine regulator of human skin re-epithelisation after wounding?

  • Concise Communication
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Chronic wounds remain a major unmet healthcare challenge, associated with substantial morbidity and economic costs. Therefore, novel treatment strategies and therapeutic approaches need to be urgently developed. Yet, despite the increasingly recognized importance of neurohormonal signaling in skin physiology, the neuroendocrine regulation of cutaneous wound healing has received surprisingly little attention. Human skin, and its appendages, locally express the pleiotropic neurohormone prolactin (PRL), which not only regulates lactation but also hair follicle cycling, angiogenesis, keratinocyte proliferation, and epithelial stem cell functions. Therefore, we examined the effects of PRL in experimentally wounded female human skin organ culture. Overall, this revealed that PRL slightly, but significantly, inhibited epidermal regeneration (reepithelialisation), cytokeratin 6 protein expression and intraepidermal mitochondrial activity (MTCO1 expression), while it promoted keratinocyte terminal differentiation (i.e. involucrin expression) ex vivo. If the current pilot data are confirmed by further studies, PRL may serve as one of the—rarely studied—negative regulators of cutaneous wound healing that control excessive reepithelialisation. This raises the intriguing and clinically relevant question of whether PRL receptor antagonists could actually promote epidermal repair after human skin wounding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ansell DM, Kloepper JE, Thomason HA, Paus R, Hardman MJ (2011) Exploring the “hair growth-wound healing connection”: anagen phase promotes wound re-epithelialization. J Invest Dermatol 131:518–528. https://doi.org/10.1038/jid.2010.291

    Article  CAS  PubMed  Google Scholar 

  2. Ben-Jonathan N, Hugo E (2015) Prolactin (PRL) in adipose tissue: regulation and functions. Adv Exp Med Biol 846:1–35. https://doi.org/10.1007/978-3-319-12114-7_1

    Article  CAS  PubMed  Google Scholar 

  3. Ben-Jonathan N, Mershon JL, Allen DL, Steinmetz RW (1996) Extrapituitary prolactin: distribution, regulation, functions, and clinical aspects. Endocr Rev 17:639–669

    CAS  PubMed  Google Scholar 

  4. Bentzien F, Struman I, Martini JF, Martial J, Weiner R (2001) Expression of the antiangiogenic factor 16K hPRL in human HCT116 colon cancer cells inhibits tumor growth in Rag1(–/–) mice. Cancer Res 61:7356–7362

    CAS  PubMed  Google Scholar 

  5. Bernard V, Young J, Chanson P, Binart N (2015) New insights in prolactin: pathological implications. Nat Rev Endocrinol 11:265–275. https://doi.org/10.1038/nrendo.2015.36

    Article  CAS  PubMed  Google Scholar 

  6. Bodo E, Kany B, Gaspar E, Knuver J, Kromminga A, Ramot Y, Biro T, Tiede S, van Beek N, Poeggeler B, Meyer KC, Wenzel BE, Paus R (2010) Thyroid-stimulating hormone, a novel, locally produced modulator of human epidermal functions, is regulated by thyrotropin-releasing hormone and thyroid hormones. Endocrinology 151:1633–1642. https://doi.org/10.1210/en.2009-0306

    Article  CAS  PubMed  Google Scholar 

  7. Borcherding DC, Hugo ER, Idelman G, De Silva A, Richtand NW, Loftus J, Ben-Jonathan N (2011) Dopamine receptors in human adipocytes: expression and functions. PLoS One 6:e25537. https://doi.org/10.1371/journal.pone.0025537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Butzelaar L, Schooneman DP, Soykan EA, Talhout W, Ulrich MM, van den Broek LJ, Gibbs S, Beelen RH, Mink van der Molen AB, Niessen FB (2016) Inhibited early immunologic response is associated with hypertrophic scarring. Exp Dermatol 25:797–804. https://doi.org/10.1111/exd.13100

    Article  CAS  PubMed  Google Scholar 

  9. Chueh FY, Leong KF, Yu CL (2010) Mitochondrial translocation of signal transducer and activator of transcription 5 (STAT5) in leukemic T cells and cytokine-stimulated cells. Biochem Biophys Res Commun 402:778–783. https://doi.org/10.1016/j.bbrc.2010.10.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Corbacho AM, Martinez De La Escalera G, Clapp C (2002) Roles of prolactin and related members of the prolactin/growth hormone/placental lactogen family in angiogenesis. J Endocrinol 173:219–238

    Article  CAS  Google Scholar 

  11. Eming SA, Martin P, Tomic-Canic M (2014) Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med 6:265 sr266. https://doi.org/10.1126/scitranslmed.3009337

    Article  CAS  Google Scholar 

  12. Eming SA, Tomic-Canic M (2017) Updates in wound healing: mechanisms and translation. Exp Dermatol 26:97–98. https://doi.org/10.1111/exd.13281

    Article  PubMed  Google Scholar 

  13. Ferraris J, Boutillon F, Bernadet M, Seilicovich A, Goffin V, Pisera D (2012) Prolactin receptor antagonism in mouse anterior pituitary: effects on cell turnover and prolactin receptor expression. Am J Physiol Endocrinol Metab 302:E356–E364. https://doi.org/10.1152/ajpendo.00333.2011

    Article  CAS  PubMed  Google Scholar 

  14. Fimmel S, Zouboulis CC (2005) Influence of physiological androgen levels on wound healing and immune status in men. Aging Male 8:166–174. https://doi.org/10.1080/13685530500233847

    Article  CAS  PubMed  Google Scholar 

  15. Foitzik K, Krause K, Conrad F, Nakamura M, Funk W, Paus R (2006) Human scalp hair follicles are both a target and a source of prolactin, which serves as an autocrine and/or paracrine promoter of apoptosis-driven hair follicle regression. Am J Pathol 168:748–756

    Article  CAS  Google Scholar 

  16. Foitzik K, Langan EA, Paus R (2009) Prolactin and the skin: a dermatological perspective on an ancient pleiotropic peptide hormone. J Investig Dermatol 129:1071–1087

    Article  CAS  Google Scholar 

  17. Freeman ME, Kanyicska B, Lerant A, Nagy G (2000) Prolactin: structure, function, and regulation of secretion. Physiol Rev 80:1523–1631

    Article  CAS  Google Scholar 

  18. Gaspar E, Hardenbicker C, Bodo E, Wenzel B, Ramot Y, Funk W, Kromminga A, Paus R (2010) Thyrotropin releasing hormone (TRH): a new player in human hair-growth control. FASEB J 24:393–403. https://doi.org/10.1096/fj.08-126417

    Article  CAS  PubMed  Google Scholar 

  19. Girolomoni G, Phillips JT, Bergstresser PR (1993) Prolactin stimulates proliferation of cultured human keratinocytes. J Investig Dermatol 101:275–279

    Article  CAS  Google Scholar 

  20. Goffin V, Bernichtein S, Touraine P, Kelly PA (2005) Development and potential clinical uses of human prolactin receptor antagonists. Endocr Rev 26:400–422

    Article  CAS  Google Scholar 

  21. Goffin V, Touraine P (2015) The prolactin receptor as a therapeutic target in human diseases: browsing new potential indications. Expert Opin Ther Targets 19:1229–1244. https://doi.org/10.1517/14728222.2015.1053209

    Article  CAS  PubMed  Google Scholar 

  22. Huynh J, Scholz GM, Aw J, Reynolds EC (2017) Interferon regulatory factor 6 promotes keratinocyte differentiation in response to Porphyromonas gingivalis. Infect Immun. https://doi.org/10.1128/IAI.00858-16

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ito N, Ito T, Betterman A, Paus R (2004) The human hair bulb is a source and target of CRH. J Invest Dermatol 122:235–237. https://doi.org/10.1046/j.1523-1747.2003.22145.x

    Article  CAS  PubMed  Google Scholar 

  24. Ito N, Ito T, Kromminga A, Bettermann A, Takigawa M, Kees F, Straub RH, Paus R (2005) Human hair follicles display a functional equivalent of the hypothalamic-pituitary-adrenal axis and synthesize cortisol. FASEB J 19:1332–1334. https://doi.org/10.1096/fj.04-1968fje

    Article  CAS  PubMed  Google Scholar 

  25. Jimi S, De Francesco F, Ferraro GA, Riccio M, Hara S (2017) A novel skin splint for accurately mapping dermal remodeling and epithelialization during wound healing. J Cell Physiol 232:1225–1232. https://doi.org/10.1002/jcp.25595

    Article  CAS  PubMed  Google Scholar 

  26. Jozic I, Vukelic S, Stojadinovic O, Liang L, Ramirez HA, Pastar I, Tomic Canic M (2017) Stress signals, mediated by membranous glucocorticoid receptor, activate PLC/PKC/GSK-3beta/beta-catenin pathway to inhibit wound closure. J Investig Dermatol 137:1144–1154. https://doi.org/10.1016/j.jid.2016.11.036

    Article  CAS  PubMed  Google Scholar 

  27. Kanda N, Watanabe S (2005) Regulatory roles of sex hormones in cutaneous biology and immunology. J Dermatol Sci 38:1–7. https://doi.org/10.1016/j.jdermsci.2004.10.011

    Article  CAS  PubMed  Google Scholar 

  28. Karimi H, Nourizad S, Momeni M, Rahbar H, Momeni M, Farhadi K (2013) Burns, hypertrophic scar and galactorrhea. J Inj Violence Res 5:117–119. https://doi.org/10.5249/jivr.v5i2.314

    Article  PubMed  PubMed Central  Google Scholar 

  29. Knuever J, Poeggeler B, Gaspar E, Klinger M, Hellwig-Burgel T, Hardenbicker C, Toth BI, Biro T, Paus R (2012) Thyrotropin-releasing hormone controls mitochondrial biology in human epidermis. J Clin Endocrinol Metab 97:978–986. https://doi.org/10.1210/jc.2011-1096

    Article  CAS  PubMed  Google Scholar 

  30. Langan EA, Foitzik-Lau K, Goffin V, Ramot Y, Paus R (2010) Prolactin: an emerging force along the cutaneous-endocrine axis. Trends Endocrinol Metab 21:569–577

    Article  CAS  Google Scholar 

  31. Langan EA, Griffiths CE, Paus R (2012) Utilizing the hair follicle to dissect the regulation and autocrine/paracrine activities of prolactin in humans. Am J Physiol Endocrinol Metab 302:E1311–E1312. https://doi.org/10.1152/ajpendo.00080.2012

    Article  CAS  PubMed  Google Scholar 

  32. Langan EA, Ramot Y, Goffin V, Griffiths CE, Foitzik K, Paus R (2010) Mind the (gender) gap: does prolactin exert gender and/or site-specific effects on the human hair follicle? J Investig Dermatol 130:886–891

    Article  CAS  Google Scholar 

  33. Langan EA, Vidali S, Pigat N, Funk W, Lisztes E, Biro T, Goffin V, Griffiths CE, Paus R (2013) Tumour necrosis factor alpha, interferon gamma and substance P are novel modulators of extrapituitary prolactin expression in human skin. PLoS One 8:e60819. https://doi.org/10.1371/journal.pone.0060819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lange T, Dimitrov S, Born J (2010) Effects of sleep and circadian rhythm on the human immune system. Ann NY Acad Sci 1193:48–59. https://doi.org/10.1111/j.1749-6632.2009.05300.x

    Article  CAS  PubMed  Google Scholar 

  35. Lee JS, Seppanen E, Patel J, Rodero MP, Khosrotehrani K (2016) ST2 receptor invalidation maintains wound inflammation, delays healing and increases fibrosis. Exp Dermatol 25:71–74. https://doi.org/10.1111/exd.12833

    Article  PubMed  Google Scholar 

  36. Marano RJ, Ben-Jonathan N (2014) Minireview: extrapituitary prolactin: an update on the distribution, regulation, and functions. Mol Endocrinol 28:622–633. https://doi.org/10.1210/me.2013-1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Martinez ML, Escario E, Poblet E, Sanchez D, Buchon FF, Izeta A, Jimenez F (2016) Hair follicle-containing punch grafts accelerate chronic ulcer healing: a randomized controlled trial. J Am Acad Dermatol 75:1007–1014. https://doi.org/10.1016/j.jaad.2016.02.1161

    Article  PubMed  Google Scholar 

  38. Mecklenburg L, Tobin DJ, Muller-Rover S, Handjiski B, Wendt G, Peters EM, Pohl S, Moll I, Paus R (2000) Active hair growth (anagen) is associated with angiogenesis. J Investig Dermatol 114:909–916

    Article  CAS  Google Scholar 

  39. Meier JA, Larner AC (2014) Toward a new STATe: the role of STATs in mitochondrial function. Semin Immunol 26:20–28. https://doi.org/10.1016/j.smim.2013.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Meier NT, Haslam IS, Pattwell DM, Zhang GY, Emelianov V, Paredes R, Debus S, Augustin M, Funk W, Amaya E, Kloepper JE, Hardman MJ, Paus R (2013) Thyrotropin-releasing hormone (TRH) promotes wound re-epithelialisation in frog and human skin. PLoS One 8:e73596. https://doi.org/10.1371/journal.pone.0073596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mencucci R, Favuzza E, Boccalini C, Lapucci A, Felici R, Resta F, Chiarugi A, Cavone L (2014) CoQ10-containing eye drops prevent UVB-induced cornea cell damage and increase cornea wound healing by preserving mitochondrial function. Investig Ophthalmol Vis Sci 55:7266–7271. https://doi.org/10.1167/iovs.14-15306

    Article  CAS  Google Scholar 

  42. Mestak O, Mestak J, Borsky J (2014) Hyperprolactinaemia: a cause of severe postoperative complication after reduction mammaplasty. J Plast Surg Hand Surg 48:421–422. https://doi.org/10.3109/2000656X.2013.801179

    Article  PubMed  Google Scholar 

  43. Molitch ME (2017) Diagnosis and treatment of pituitary adenomas: a review. JAMA 317:516–524. https://doi.org/10.1001/jama.2016.19699

    Article  PubMed  Google Scholar 

  44. Morris CJ, Aeschbach D, Scheer FA (2012) Circadian system, sleep and endocrinology. Mol Cell Endocrinol 349(1):91–104. https://doi.org/10.1016/j.mce.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  45. Muliyil S, Narasimha M (2014) Mitochondrial ROS regulates cytoskeletal and mitochondrial remodeling to tune cell and tissue dynamics in a model for wound healing. Dev Cell 28:239–252. https://doi.org/10.1016/j.devcel.2013.12.019

    Article  CAS  PubMed  Google Scholar 

  46. Na J, Shin JY, Jeong H, Lee JY, Kim BJ, Kim WS, Yune TY, Ju BG (2017) JMJD3 and NF-kappaB-dependent activation of Notch1 gene is required for keratinocyte migration during skin wound healing. Sci Rep 7:6494. https://doi.org/10.1038/s41598-017-06750-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Oakes SR, Rogers RL, Naylor MJ, Ormandy CJ (2008) Prolactin regulation of mammary gland development. J Mammary Gland Biol Neoplasia 13:13–28. https://doi.org/10.1007/s10911-008-9069-5

    Article  PubMed  Google Scholar 

  48. Ozler M, Simsek K, Ozkan C, Akgul EO, Topal T, Oter S, Korkmaz A (2010) Comparison of the effect of topical and systemic melatonin administration on delayed wound healing in rats that underwent pinealectomy. Scand J Clin Lab Investig 70:447–452. https://doi.org/10.3109/00365513.2010.506926

    Article  CAS  Google Scholar 

  49. Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, Patel SB, Khalid L, Isseroff RR, Tomic-Canic M (2014) Epithelialization in wound healing: a comprehensive review. Adv Wound Care (New Rochelle) 3:445–464. https://doi.org/10.1089/wound.2013.0473

    Article  Google Scholar 

  50. Paus R (1991) Does prolactin play a role in skin biology and pathology? Med Hypotheses 36:33–42

    Article  CAS  Google Scholar 

  51. Paus R, Langan EA, Vidali S, Ramot Y, Andersen B (2014) Neuroendocrinology of the hair follicle: principles and clinical perspectives. Trends Mol Med 20:559–570. https://doi.org/10.1016/j.molmed.2014.06.002

    Article  CAS  PubMed  Google Scholar 

  52. Poeggeler B, Knuever J, Gaspar E, Biro T, Klinger M, Bodo E, Wiesner RJ, Wenzel BE, Paus R (2010) Thyrotropin powers human mitochondria. FASEB J 24:1525–1531. https://doi.org/10.1096/fj.09-147728

    Article  CAS  PubMed  Google Scholar 

  53. Poutahidis T, Kearney SM, Levkovich T, Qi P, Varian BJ, Lakritz JR, Ibrahim YM, Chatzigiagkos A, Alm EJ, Erdman SE (2013) Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin. PLoS One 8:e78898. https://doi.org/10.1371/journal.pone.0078898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pugazhenthi K, Kapoor M, Clarkson AN, Hall I, Appleton I (2008) Melatonin accelerates the process of wound repair in full-thickness incisional wounds. J Pineal Res 44:387–396. https://doi.org/10.1111/j.1600-079X.2007.00541.x

    Article  CAS  PubMed  Google Scholar 

  55. Ramot Y, Biro T, Tiede S, Toth BI, Langan EA, Sugawara K, Foitzik K, Ingber A, Goffin V, Langbein L, Paus R (2010) Prolactin—a novel neuroendocrine regulator of human keratin expression in situ. Faseb J 24:1768–1779

    Article  CAS  Google Scholar 

  56. Ramot Y, Paus R (2014) Harnessing neuroendocrine controls of keratin expression: a new therapeutic strategy for skin diseases? Bioessays 36:672–686. https://doi.org/10.1002/bies.201400006

    Article  CAS  PubMed  Google Scholar 

  57. Rees PA, Greaves NS, Baguneid M, Bayat A (2015) Chemokines in wound healing and as potential therapeutic targets for reducing cutaneous scarring. Adv Wound Care (New Rochelle) 4:687–703. https://doi.org/10.1089/wound.2014.0568

    Article  Google Scholar 

  58. Saraiya H (2003) Postburn galactorrhea with refractory hypertrophic scars: role of obesity under scrutiny. J Burn Care Rehabil 24:392–394. https://doi.org/10.1097/01.BCR.0000095512.54177.65

    Article  PubMed  Google Scholar 

  59. Savino W (2017) Prolactin: an immunomodulator in health and disease. Front Horm Res 48:69–75. https://doi.org/10.1159/000452906

    Article  PubMed  Google Scholar 

  60. Siebert N, Xu W, Grambow E, Zechner D, Vollmar B (2011) Erythropoietin improves skin wound healing and activates the TGF-beta signaling pathway. Lab Investig 91:1753–1765. https://doi.org/10.1038/labinvest.2011.125

    Article  CAS  PubMed  Google Scholar 

  61. Slominski A, Zbytek B, Nikolakis G, Manna PR, Skobowiat C, Zmijewski M, Li W, Janjetovic Z, Postlethwaite A, Zouboulis CC, Tuckey RC (2013) Steroidogenesis in the skin: implications for local immune functions. J Steroid Biochem Mol Biol 137:107–123. https://doi.org/10.1016/j.jsbmb.2013.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Slominski A, Zbytek B, Pisarchik A, Slominski RM, Zmijewski MA, Wortsman J (2006) CRH functions as a growth factor/cytokine in the skin. J Cell Physiol 206:780–791. https://doi.org/10.1002/jcp.20530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Slominski AT, Zmijewski MA (2017) Glucocorticoids inhibit wound healing: novel mechanism of action. J Investig Dermatol 137:1012–1014. https://doi.org/10.1016/j.jid.2017.01.024

    Article  CAS  PubMed  Google Scholar 

  64. Sorg H, Grambow E, Eckl E, Vollmar B (2017) Oxytocin effects on experimental skin wound healing. Innov Surg Sci 2:219–232. https://doi.org/10.1515/iss-2017-0033

    Article  Google Scholar 

  65. Sorg H, Krueger C, Schulz T, Menger MD, Schmitz F, Vollmar B (2009) Effects of erythropoietin in skin wound healing are dose related. FASEB J 23:3049–3058. https://doi.org/10.1096/fj.08-109991

    Article  CAS  PubMed  Google Scholar 

  66. Suarez E, Syed F, Alonso-Rasgado T, Bayat A (2015) Identification of biomarkers involved in differential profiling of hypertrophic and keloid scars versus normal skin. Arch Dermatol Res 307:115–133. https://doi.org/10.1007/s00403-014-1512-4

    Article  CAS  PubMed  Google Scholar 

  67. Tang MW, Reedquist KA, Garcia S, Fernandez BM, Codullo V, Vieira-Sousa E, Goffin V, Reuwer AQ, Twickler MT, Gerlag DM, Tak PP (2016) The prolactin receptor is expressed in rheumatoid arthritis and psoriatic arthritis synovial tissue and contributes to macrophage activation. Rheumatology 55:2248–2259. https://doi.org/10.1093/rheumatology/kew316

    Article  CAS  PubMed  Google Scholar 

  68. Ud-Din S, Sebastian A, Giddings P, Colthurst J, Whiteside S, Morris J, Nuccitelli R, Pullar C, Baguneid M, Bayat A (2015) Angiogenesis is induced and wound size is reduced by electrical stimulation in an acute wound healing model in human skin. PLoS One 10:e0124502. https://doi.org/10.1371/journal.pone.0124502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vagnozzi AN, Reiter JF, Wong SY (2015) Hair follicle and interfollicular epidermal stem cells make varying contributions to wound regeneration. Cell Cycle 14:3408–3417. https://doi.org/10.1080/15384101.2015.1090062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vidali S, Cheret J, Giesen M, Haeger S, Alam M, Watson REB, Langton AK, Klinger M, Knuever J, Funk W, Kofler B, Paus R (2016) Thyroid hormones enhance mitochondrial function in human epidermis. J Investig Dermatol 136:2003–2012. https://doi.org/10.1016/j.jid.2016.05.118

    Article  CAS  PubMed  Google Scholar 

  71. Vidali S, Knuever J, Lerchner J, Giesen M, Biro T, Klinger M, Kofler B, Funk W, Poeggeler B, Paus R (2014) Hypothalamic-pituitary-thyroid axis hormones stimulate mitochondrial function and biogenesis in human hair follicles. J Investig Dermatol 134:33–42. https://doi.org/10.1038/jid.2013.286

    Article  CAS  PubMed  Google Scholar 

  72. Wilkinson HN, Hardman MJ (2017) The role of estrogen in cutaneous ageing and repair. Maturitas 103:60–64. https://doi.org/10.1016/j.maturitas.2017.06.026

    Article  CAS  PubMed  Google Scholar 

  73. Willenborg S, Eming SA (2014) Macrophages - sensors and effectors coordinating skin damage and repair. J Dtsch Dermatol Ges 12:214–221. https://doi.org/10.1111/ddg.12290 214–223.

    Article  PubMed  Google Scholar 

  74. Xu W, Jong Hong S, Jia S, Zhao Y, Galiano RD, Mustoe TA (2012) Application of a partial-thickness human ex vivo skin culture model in cutaneous wound healing study. Lab Investig 92:584–599. https://doi.org/10.1038/labinvest.2011.184

    Article  CAS  PubMed  Google Scholar 

  75. Yang X, Friedl A (2015) A positive feedback loop between prolactin and STAT5 promotes angiogenesis. Adv Exp Med Biol 846:265–280. https://doi.org/10.1007/978-3-319-12114-7_12

    Article  CAS  PubMed  Google Scholar 

  76. Yang X, Meyer K, Friedl A (2013) STAT5 and prolactin participate in a positive autocrine feedback loop that promotes angiogenesis. J Biol Chem 288:21184–21196. https://doi.org/10.1074/jbc.M113.481119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zbytek B, Slominski AT (2005) Corticotropin-releasing hormone induces keratinocyte differentiation in the adult human epidermis. J Cell Physiol 203:118–126. https://doi.org/10.1002/jcp.20209

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Paus.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langan, E.A., Fink, T. & Paus, R. Is prolactin a negative neuroendocrine regulator of human skin re-epithelisation after wounding?. Arch Dermatol Res 310, 833–841 (2018). https://doi.org/10.1007/s00403-018-1864-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-018-1864-2

Keywords

Navigation