Skip to main content

Advertisement

Log in

The role of TrkA in the promoting wounding–healing effect of CD271 on epidermal stem cells

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

CD271, a receptor of nerve growth factor (NGF), affects the biological properties of epidermal stem cells (eSCs) which are essential for skin wound closure. Tropomyosin-receptor kinase A (TrkA), another receptor of NGF, combined with CD271 has been involved with nervous system and skin keratinocytes. However, the exact role of TrkA combined with CD271 in eSCs during skin wound closure is still unclear. This study aimed to reveal the role of TrkA in the promoting wounding–healing effect of CD271 on eSCs. We obtained CD271-vo (over-expression of CD271) eSCs by lentiviral infection. K252a was used to inhibit TrkA expression. Full-thickness skin mouse wound closure model (5 mm in diameter) was used to detect the ability of CD271 over-expressed/TrkA-deficient during wound healing. The biological characteristics of eSCs and their proliferation and apoptosis were detected using immunohistochemistry and western blot. The expressions of protein kinase B (pAkt)/Akt, phosphorylated extracellular-signal-related kinase (pERK)/ERK1/2, and c-Jun N-terminal kinase (pJNK)/JNK were also detected by western blot. We found that over-expression of CD271 promoted the biological functions of eSCs. Interestingly, over-expression of CD271 in the absence of TrkA neither promoted eSCs’ migration and proliferation nor promoted wound healing in a mouse model. In addition, we observed the reduced expression of pAkt/Akt and pERK/ERK1/2 following TrkA inhibition in vitro. Our studies demonstrated that the role of TrkA in the promoting wounding–healing effect of CD271 on eSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Egfr:

Epidermal growth receptor

eSCs:

Epidermal stem cells

GAPDH:

Glyceraldehydes-3-phosphate dehydrogenase

NGF:

Nerve growth factor

PI:

Propidium iodide

TAC:

Transit amplifying cells

References

  1. Angeles TS, Yang SX, Steffler C, Dionne CA (1998) Kinetics of trkA tyrosine kinase activity and inhibition by K-252a. Arch Biochem Biophys 349:267–274. https://doi.org/10.1006/abbi.1997.0490

    Article  CAS  PubMed  Google Scholar 

  2. Blanpain C (2010) Stem cells: skin regeneration and repair. Nature 464:686–687. https://doi.org/10.1038/464686a

    Article  CAS  PubMed  Google Scholar 

  3. Boulton TG, Nye SH, Robbins DJ, Ip NY, Radziejewska E, Morgenbesser SD, DePinho RA, Panayotatos N, Cobb MH, Yancopoulos GD (1991) ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65:663–675

    Article  CAS  PubMed  Google Scholar 

  4. Carter BD, Kaltschmidt C, Kaltschmidt B, Offenhauser N, Bohm-Matthaei R, Baeuerle PA, Barde YA (1996) Selective activation of NF-kappa B by nerve growth factor through the neurotrophin receptor p75. Science 272:542–545

    Article  CAS  PubMed  Google Scholar 

  5. Casaccia-Bonnefil P, Carter BD, Dobrowsky RT, Chao MV (1996) Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature 383:716–719. https://doi.org/10.1038/383716a0

    Article  CAS  PubMed  Google Scholar 

  6. Castilho RM, Squarize CH, Gutkind JS (2013) Exploiting PI3K/mTOR signaling to accelerate epithelial wound healing. Oral Dis 19:551–558. https://doi.org/10.1111/odi.12070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chae CH, Jung SL, An SH, Park BY, Wang SW, Cho IH, Cho JY, Kim HT (2009) Treadmill exercise improves cognitive function and facilitates nerve growth factor signaling by activating mitogen-activated protein kinase/extracellular signal-regulated kinase1/2 in the streptozotocin-induced diabetic rat hippocampus. Neuroscience 164:1665–1673. https://doi.org/10.1016/j.neuroscience.2009.09.075

    Article  CAS  PubMed  Google Scholar 

  8. Chen J, Li Y, Hao H, Li C, Du Y, Hu Y, Li J, Liang Z, Li C, Liu J, Chen L (2015) Mesenchymal stem cell conditioned medium promotes proliferation and migration of alveolar epithelial cells under septic conditions in vitro via the JNK-P38 signaling pathway. Cell Physiol Biochem 37:1830–1846. https://doi.org/10.1159/000438545

    Article  CAS  PubMed  Google Scholar 

  9. Cortazzo MH, Kassis ES, Sproul KA, Schor NF (1996) Nerve growth factor (NGF)-mediated protection of neural crest cells from antimitotic agent-induced apoptosis: the role of the low-affinity NGF receptor. J Neurosci 16:3895–3899

    Article  CAS  PubMed  Google Scholar 

  10. Costantini C, Weindruch R, Della Valle G, Puglielli L (2005) A TrkA-to-p75NTR molecular switch activates amyloid beta-peptide generation during aging. Biochem J 391:59–67. https://doi.org/10.1042/bj20050700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dai W, Bai Y, Hebda L, Zhong X, Liu J, Kao J, Duan C (2014) Calcium deficiency-induced and TRP channel-regulated IGF1R-PI3K-Akt signaling regulates abnormal epithelial cell proliferation. Cell Death Differ 21:568–581. https://doi.org/10.1038/cdd.2013.177

    Article  CAS  PubMed  Google Scholar 

  12. Dedoni S, Olianas MC, Ingianni A, Onali P (2014) Type I interferons up-regulate the expression and signalling of p75 NTR/TrkA receptor complex in differentiated human SH-SY5Y neuroblastoma cells. Neuropharmacology 79:321–334. https://doi.org/10.1016/j.neuropharm.2013.12.002

    Article  CAS  PubMed  Google Scholar 

  13. Dou YC, Hagstromer L, Emtestam L, Johansson O (2006) Increased nerve growth factor and its receptors in atopic dermatitis: an immunohistochemical study. Arch Dermatol Res 298:31–37. https://doi.org/10.1007/s00403-006-0657-1

    Article  CAS  PubMed  Google Scholar 

  14. Dreger T, Watson JT, Akers W, Molligan J, Achilefu S, Schon LC, Zhang Z (2014) Intravenous application of CD271-selected mesenchymal stem cells during fracture healing. J Orthop Trauma 28(Suppl 1):S15–S19. https://doi.org/10.1097/bot.0000000000000063

    Article  PubMed  PubMed Central  Google Scholar 

  15. Friedman WJ (2000) Neurotrophins induce death of hippocampal neurons via the p75 receptor. J Neurosci 20:6340–6346

    Article  CAS  PubMed  Google Scholar 

  16. Fujimura M, Usuki F (2015) Methylmercury causes neuronal cell death through the suppression of the TrkA pathway: in vitro and in vivo effects of TrkA pathway activators. Toxicol Appl Pharmacol 282:259–266. https://doi.org/10.1016/j.taap.2014.12.008

    Article  CAS  PubMed  Google Scholar 

  17. Ingraham CA, Schor NF (2009) Necdin and TrkA contribute to modulation by p75NTR of resistance to oxidant stress. Exp Cell Res 315:3532–3542. https://doi.org/10.1016/j.yexcr.2009.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Iwata Y, Hasebe Y, Hasegawa S, Nakata S, Yagami A, Matsunaga K, Sugiura K, Akamatsu H (2017) Dermal CD271+ cells are closely associated with regeneration of the dermis in the wound healing process. Acta Derm Venereol 97:593–600. https://doi.org/10.2340/00015555-2624

    Article  CAS  PubMed  Google Scholar 

  19. Johansson O, Liang Y, Emtestam L (2002) Increased nerve growth factor- and tyrosine kinase A-like immunoreactivities in prurigo nodularis skin—an exploration of the cause of neurohyperplasia. Arch Dermatol Res 293:614–619. https://doi.org/10.1007/s00403-001-0285-8

    Article  CAS  PubMed  Google Scholar 

  20. Jones PH, Simons BD, Watt FM (2007) Sic transit gloria: farewell to the epidermal transit amplifying cell? Cell Stem Cell 1:371–381. https://doi.org/10.1016/j.stem.2007.09.014

    Article  CAS  PubMed  Google Scholar 

  21. Kanaji N, Nelson A, Wang X, Sato T, Nakanishi M, Gunji Y, Basma H, Michalski J, Farid M, Rennard SI, Liu X (2013) Differential roles of JNK, ERK1/2, and p38 mitogen-activated protein kinases on endothelial cell tissue repair functions in response to tumor necrosis factor-alpha. J Vasc Res 50:145–156. https://doi.org/10.1159/000345525

    Article  CAS  PubMed  Google Scholar 

  22. Kashiwai K, Kajiya M, Matsuda S, Ouhara K, Takeda K, Takata T, Kitagawa M, Fujita T, Shiba H, Kurihara H (2016) Distinction between cell proliferation and apoptosis signals regulated by brain-derived neurotrophic factor in human periodontal ligament cells and gingival epithelial cells. J Cell Biochem 117:1543–1555. https://doi.org/10.1002/jcb.25446

    Article  CAS  PubMed  Google Scholar 

  23. Khwaja FS, Quann EJ, Pattabiraman N, Wynne S, Djakiew D (2008) Carprofen induction of p75NTR-dependent apoptosis via the p38 mitogen-activated protein kinase pathway in prostate cancer cells. Mol Cancer Ther 7:3539–3545. https://doi.org/10.1158/1535-7163.mct-08-0512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Knusel B, Hefti F (1992) K-252 compounds: modulators of neurotrophin signal transduction. J Neurochem 59:1987–1996

    Article  CAS  PubMed  Google Scholar 

  25. Kumar V, Gupta AK, Shukla RK, Tripathi VK, Jahan S, Pandey A, Srivastava A, Agrawal M, Yadav S, Khanna VK, Pant AB (2015) Molecular mechanism of switching of TrkA/p75(NTR) signaling in monocrotophos induced neurotoxicity. Sci Rep 5:14038. https://doi.org/10.1038/srep14038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lad SP, Peterson DA, Bradshaw RA, Neet KE (2003) Individual and combined effects of TrkA and p75NTR nerve growth factor receptors. A role for the high affinity receptor site. J Biol Chem 278:24808–24817. https://doi.org/10.1074/jbc.M212270200

    Article  CAS  PubMed  Google Scholar 

  27. Latifi-Pupovci H, Kuci Z, Wehner S, Bonig H, Lieberz R, Klingebiel T, Bader P, Kuci S (2015) In vitro migration and proliferation (“wound healing”) potential of mesenchymal stromal cells generated from human CD271(+) bone marrow mononuclear cells. J Transl Med 13:315. https://doi.org/10.1186/s12967-015-0676-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liao TY, Tzeng WY, Wu HH, Cherng CG, Wang CY, Hu SS, Yu L (2016) Rottlerin impairs the formation and maintenance of psychostimulant-supported memory. Psychopharmacology 233:1455–1465. https://doi.org/10.1007/s00213-016-4251-8

    Article  CAS  PubMed  Google Scholar 

  29. Liu M, Chen F, Sha L, Wang S, Tao L, Yao L, He M, Yao Z, Liu H, Zhu Z, Zhang Z, Zheng Z, Sha X, Wei M (2014) (−)-Epigallocatechin-3-gallate ameliorates learning and memory deficits by adjusting the balance of TrkA/p75NTR signaling in APP/PS1 transgenic mice. Mol Neurobiol 49:1350–1363. https://doi.org/10.1007/s12035-013-8608-2

    Article  CAS  PubMed  Google Scholar 

  30. Liu PY, Bondesson L, Lontz W, Johansson O (1996) The occurrence of cutaneous nerve endings and neuropeptides in vitiligo vulgaris: a case-control study. Arch Dermatol Res 288:670–675

    Article  CAS  PubMed  Google Scholar 

  31. Mahadeo D, Kaplan L, Chao MV, Hempstead BL (1994) High affinity nerve growth factor binding displays a faster rate of association than p140trk binding. Implications for multi-subunit polypeptide receptors. J Biol Chem 269:6884–6891

    CAS  PubMed  Google Scholar 

  32. Majdan M, Walsh GS, Aloyz R, Miller FD (2001) TrkA mediates developmental sympathetic neuron survival in vivo by silencing an ongoing p75NTR-mediated death signal. J Cell Biol 155:1275–1285. https://doi.org/10.1083/jcb.200110017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Matsubayashi Y, Ebisuya M, Honjoh S, Nishida E (2004) ERK activation propagates in epithelial cell sheets and regulates their migration during wound healing. Curr Biol 14:731–735. https://doi.org/10.1016/j.cub.2004.03.060

    Article  CAS  PubMed  Google Scholar 

  34. Nykjaer A, Willnow TE, Petersen CM (2005) p75NTR—live or let die. Curr Opin Neurobiol 15:49–57. https://doi.org/10.1016/j.conb.2005.01.004

    Article  CAS  PubMed  Google Scholar 

  35. Salehi AH, Xanthoudakis S, Barker PA (2002) NRAGE, a p75 neurotrophin receptor-interacting protein, induces caspase activation and cell death through a JNK-dependent mitochondrial pathway. J Biol Chem 277:48043–48050. https://doi.org/10.1074/jbc.M205324200

    Article  CAS  PubMed  Google Scholar 

  36. Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806. https://doi.org/10.1038/414799a

    Article  CAS  PubMed  Google Scholar 

  37. Sarkar A, Tatlidede S, Scherer SS, Orgill DP, Berthiaume F (2011) Combination of stromal cell-derived factor-1 and collagen-glycosaminoglycan scaffold delays contraction and accelerates reepithelialization of dermal wounds in wild-type mice. Wound Repair Regen 19:71–79. https://doi.org/10.1111/j.1524-475X.2010.00646.x

    Article  PubMed  Google Scholar 

  38. Segrelles C, Garcia-Escudero R, Garin MI, Aranda JF, Hernandez P, Ariza JM, Santos M, Paramio JM, Lorz C (2014) Akt signaling leads to stem cell activation and promotes tumor development in epidermis. Stem Cells 32:1917–1928. https://doi.org/10.1002/stem.1669

    Article  CAS  PubMed  Google Scholar 

  39. Tapley P, Lamballe F, Barbacid M (1992) K252a is a selective inhibitor of the tyrosine protein kinase activity of the trk family of oncogenes and neurotrophin receptors. Oncogene 7:371–381

    CAS  PubMed  Google Scholar 

  40. Truzzi F, Marconi A, Atzei P, Panza MC, Lotti R, Dallaglio K, Tiberio R, Palazzo E, Vaschieri C, Pincelli C (2011) p75 neurotrophin receptor mediates apoptosis in transit-amplifying cells and its overexpression restores cell death in psoriatic keratinocytes. Cell Death Differ 18:948–958. https://doi.org/10.1038/cdd.2010.162

    Article  CAS  PubMed  Google Scholar 

  41. Truzzi F, Saltari A, Palazzo E, Lotti R, Petrachi T, Dallaglio K, Gemelli C, Grisendi G, Dominici M, Pincelli C, Marconi A (2015) CD271 mediates stem cells to early progeny transition in human epidermis. J Invest Dermatol 135:786–795. https://doi.org/10.1038/jid.2014.454

    Article  CAS  PubMed  Google Scholar 

  42. Wang T, Takikawa Y, Watanabe A, Kakisaka K, Oikawa K, Miyamoto Y, Suzuki K (2014) Proliferation of mouse liver stem/progenitor cells induced by plasma from patients with acute liver failure is modulated by P2Y2 receptor-mediated JNK activation. J Gastroenterol 49:1557–1566. https://doi.org/10.1007/s00535-013-0927-6

    Article  CAS  PubMed  Google Scholar 

  43. Yan C, Liang Y, Nylander KD, Wong J, Rudavsky RM, Saragovi HU, Schor NF (2002) p75-nerve growth factor as an antiapoptotic complex: independence versus cooperativity in protection from enediyne chemotherapeutic agents. Mol Pharmacol 61:710–719

    Article  CAS  PubMed  Google Scholar 

  44. Yang SL, Han R, Liu Y, Hu LY, Li XL, Zhu LY (2014) Negative pressure wound therapy is associated with up-regulation of bFGF and ERK1/2 in human diabetic foot wounds. Wound Repair Regen 22:548–554. https://doi.org/10.1111/wrr.12195

    Article  PubMed  Google Scholar 

  45. Zhang M, Sun L, Wang X, Chen S, Kong Y, Liu N, Chen Y, Jia Q, Zhang L, Zhang L (2014) Activin B promotes BMSC-mediated cutaneous wound healing by regulating cell migration via the JNK-ERK signaling pathway. Cell Transplant 23:1061–1073. https://doi.org/10.3727/096368913x666999

    Article  PubMed  Google Scholar 

  46. Zhang M, Cao Y, Li X, Hu L, Taieb SK, Zhu X, Zhang J, Feng Y, Zhao R, Wang M, Xue W, Yang Z, Wang Y (2018) Cd271 mediates proliferation and differentiation of epidermal stem cells to support cutaneous burn wound healing. Cell Tissue Res 371:273–282. https://doi.org/10.1007/s00441-017-2723-8

    Article  CAS  PubMed  Google Scholar 

  47. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228. https://doi.org/10.1089/107632701300062859

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Yibing Wang and Xiaohong Li conceived and designed the experiments; Min Zhang performed the experiments; Yuehou Zhang and Jiaxu Ma contributed reagents, materials, and analysis tools; Jun Ding, Siyuan Yin and Yongqian Cao analyzed the data; Xiaohong Li and Min Zhang wrote the paper; Xiaohong Li, Faming Tian, Yuan Li, and Jun Ding review the paper and references.

Funding

This study was funded by the National Natural Science Foundation of China (No. 81571911 and 81772092), and Science and Technology Development Program of Shandong Province (No. 2016GSF201080).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yibing Wang or Yongqian Cao.

Ethics declarations

Conflict of interest

The authors declared that no conflict of interests.

Ethical approval

All involved animals were performed according to the National Institutes of Health (NIH) Guide. Under pentobarbital sodium anesthesia, all surgeries were performed. Followed by the Committee on the Ethics of Shandong University, the experiments were approved.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Zhang, Y., Ding, J. et al. The role of TrkA in the promoting wounding–healing effect of CD271 on epidermal stem cells. Arch Dermatol Res 310, 737–750 (2018). https://doi.org/10.1007/s00403-018-1863-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-018-1863-3

Keywords

Navigation