Archives of Dermatological Research

, Volume 310, Issue 3, pp 231–240 | Cite as

Subcutaneous injection of multipotent mesenchymal stromal cells admixed with melanoma cells in mice favors tumor incidence and growth: a systematic review and meta-analysis

  • Marcos Freitas Cordeiro
  • Luana Patricia Marmitt
  • Ana Paula Horn
Original Paper


Multipotent mesenchymal stem/stromal cells (MSCs) have strong tropism towards cancer cells, thus being tested as tools for the targeted delivery of therapeutic substances for the treatment of melanoma. However, different experimental approaches for melanoma induction and MSC treatment can have a direct impact on the outcomes. Systematic search was carried out in three databases (PubMed, Scopus, and Web of Science) to include all studies, where stem cells were used as intervention for animal models for melanoma. Selected articles were classified according to SYRCLE’s risk of bias tool for animals’ studies. Experimental variables and published data for tumor incidence and growth were extracted from the eligible articles and standardized using Hedge’s G for random effects meta-analysis and meta-regression. From 627 entries, 11 articles were eligible for meta-analysis. All studies tested the effects of a single injection of mesenchymal stem/stromal cells (MSCs) (from bone marrow or adipose tissue) admixed with B16 mouse melanoma cells (B16–F0 or B16–F10) or with human melanoma cells (A375 or M4Beu) in mice. Mean SYRCLE score was 3.09 out of 10. Results from random effects meta-analysis indicate that MSCs favored both tumor incidence and tumor growth (p = 0.001) in melanoma. Our results show that MSCs are protumorigenic in co-injection mice models for melanoma, increasing both tumor incidence and growth.


Animal model Cell therapy Melanoma Pre-clinical trial 



Marcos F Cordeiro would like to thank Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), and Luana P Marmitt would like to thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), for financial support. The authors would like to thank Dr. Fernando Cesar Wehrmeister for statistical support.

Supplementary material

403_2018_1819_MOESM1_ESM.pdf (70 kb)
Supplementary material 1 (PDF 70 KB)
403_2018_1819_MOESM2_ESM.pdf (1.2 mb)
Supplementary material 2 (PDF 1251 KB)


  1. 1.
    Akay I, Oxmann D, Helfenstein A, Mentlein R, Schünke M, Hassenpflug J, Kurz B (2010) Tumor risk by tissue engineering: cartilaginous differentiation of mesenchymal stem cells reduces tumor growth. Osteoarthritis Cartilage 18:389–396. CrossRefPubMedGoogle Scholar
  2. 2.
    Atkinson V (2015) Medical management of malignant melanoma. Aust Prescr 38:74–78. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bahrambeigi V, Ahmadi N, Salehi R, Javanmard SH (2015) Genetically modified murine adipose-derived mesenchymal stem cells producing interleukin-2 favor B16F10 melanoma cell proliferation. Immunol Invest 44:216–236. CrossRefPubMedGoogle Scholar
  4. 4.
    Boukerche H, Benchaibi M, Berthier-Vergnes O, Lizard G, Bailly M, Bailly M, McGregor JL (1994) Two human melanoma cell-line variants with enhanced in vivo tumor growth and metastatic capacity do not express the beta 3 integrin subunit. Eur J Biochem 220:485–491CrossRefPubMedGoogle Scholar
  5. 5.
    Briquet A, Dubois S, Bekaert S, Dolhet M, Beguin Y, Gothot A (2010) Prolonged ex vivo culture of human bone marrow mesenchymal stem cells influences their supportive activity toward NOD/SCID-repopulating cells and committed progenitor cells of B lymphoid and myeloid lineages. Haematologica 95:47–56. CrossRefPubMedGoogle Scholar
  6. 6.
    Chapman SWK, Metzger N, Grest P, Feige K, von Rechenberg B, Auer JA, Hottiger MO (2009) Isolation, establishment, and characterization of ex vivo equine melanoma cell cultures. In Vitro Cell Dev Biol Anim 45:152–162. CrossRefPubMedGoogle Scholar
  7. 7.
    Chen X, Lin X, Zhao J, Shi W, Zhang H, Wang Y, Kan B, Du L, Wang B, Wei Y, Liu Y, Zhao X (2008) A tumor-selective biotherapy with prolonged impact on established metastases based on cytokine gene-engineered MSCs. Mol Ther 16:749–756. CrossRefPubMedGoogle Scholar
  8. 8.
    Clark EA, Golub TR, Lander ES, Hynes RO (2000) Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406:532–535. CrossRefPubMedGoogle Scholar
  9. 9.
    Cornfield J (1951) A method of estimating comparative rates from clinical data; applications to cancer of the lung, breast, and cervix. J Natl Cancer Inst 11:1269–1275PubMedGoogle Scholar
  10. 10.
    Das M, Sundell IB, Koka PS (2013) Adult mesenchymal stem cells and their potency in the cell-based therapy. J Stem Cells 8:1–16PubMedGoogle Scholar
  11. 11.
    Di Battista JA, Shebaby W, Kizilay O, Hamade E, Abou Merhi R, Mebarek S, Abdallah D, Badran B, Saad F, K Abdalla E, Faour WH (2014) Proliferation and differentiation of human adipose-derived mesenchymal stem cells (ASCs) into osteoblastic lineage are passage dependent. Inflamm Res Off J Eur Histamine Res Soc Al 63:907–917. Google Scholar
  12. 12.
    Edge SB, American Joint Committee on Cancer (2010) AJCC cancer staging manual, 7th edn. Springer, New YorkGoogle Scholar
  13. 13.
    Eliopoulos N, Francois M, Boivin M-N, Martineau D, Galipeau J (2008) Neo-organoid of marrow mesenchymal stromal cells secreting interleukin-12 for breast cancer therapy. Cancer Res 68:4810–4818. CrossRefPubMedGoogle Scholar
  14. 14.
    Fidler IJ (1973) Selection of successive tumour lines for metastasis. Nature New Biol 242:148–149CrossRefPubMedGoogle Scholar
  15. 15.
    Flower A, McKenna JW, Upreti G (2015) Validity and reliability of GraphClick and DataThief III for data extraction. Behav Modif. Google Scholar
  16. 16.
    Gallagher RP, Lee TK, Bajdik CD, Borugian M (2010) Ultraviolet radiation. Chronic Dis Can 29(Suppl 1):51–68PubMedGoogle Scholar
  17. 17.
    Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, Parks WP (1973) In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst 51:1417–1423CrossRefPubMedGoogle Scholar
  18. 18.
    Green A, Shilkaitis A, Bratescu L, Amoss MS, Beattie CW (1992) Establishment and characterization of four Sinclair swine cutaneous malignant melanoma cell lines. Cancer Genet Cytogenet 61:77–92CrossRefPubMedGoogle Scholar
  19. 19.
    Han Z, Tian Z, Lv G, Zhang L, Jiang G, Sun K, Wang C, Bu X, Li R, Shi Y, Wu M, Wei L (2011) Immunosuppressive effect of bone marrow-derived mesenchymal stem cells in inflammatory microenvironment favours the growth of B16 melanoma cells. J Cell Mol Med 15:2343–2352. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Harbord RM, Higgins JPT (2008) Meta-regression in Stata. Stata J 8:493–519Google Scholar
  21. 21.
    Hedges LV, Olkin I (1985) Statistical methods for meta-analysis. Academic Press, OrlandoGoogle Scholar
  22. 22.
    Herlyn M, Fukunaga-Kalabis M (2010) What is a good model for melanoma? J Invest Dermatol 130:911–912. CrossRefPubMedGoogle Scholar
  23. 23.
    Holman C, Piper SK, Grittner U, Diamantaras AA, Kimmelman J, Siegerink B, Dirnagl U (2016) Where have all the rodents gone? The effects of attrition in experimental research on cancer and stroke. PLoS Biol 14:e1002331. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hong I-S, Lee H-Y, Kang K-S (2014) Mesenchymal stem cells and cancer: friends or enemies? Mutat Res 768:98–106. CrossRefPubMedGoogle Scholar
  25. 25.
    Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW (2014) SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 14:43. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hooijmans CR, Tillema A, Leenaars M, Ritskes-Hoitinga M (2010) Enhancing search efficiency by means of a search filter for finding all studies on animal experimentation in PubMed. Lab Anim 44:170–175. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Huang Y, Yu P, Li W, Ren G, Roberts AI, Cao W, Zhang X, Su J, Chen X, Chen Q, Shou P, Xu C, Du L, Lin L, Xie N, Zhang L, Wang Y, Shi Y (2014) p53 regulates mesenchymal stem cell-mediated tumor suppression in a tumor microenvironment through immune modulation. Oncogene 33:3830–3838. CrossRefPubMedGoogle Scholar
  28. 28.
    Hutchinson L, Kirk R (2011) High drug attrition rates—where are we going wrong? Nat Rev Clin Oncol 8:189–190. CrossRefPubMedGoogle Scholar
  29. 29.
    Inoue K, Ohashi E, Kadosawa T, Hong S-H, Matsunaga S, Mochizuki M, Nishimura R, Sasaki N (2004) Establishment and characterization of four canine melanoma cell lines. J Vet Med Sci Jpn Soc Vet Sci 66:1437–1440CrossRefGoogle Scholar
  30. 30.
    Jazedje T, Ribeiro AL, Pellati M, de Siqueira Bueno HM, Nagata G, Trierveiler M, Rodrigues EG, Zatz M (2015) Human mesenchymal stromal cells transplantation may enhance or inhibit 4T1 murine breast adenocarcinoma through different approaches. Stem Cells Int 2015:796215. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kerbel RS (2003) Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: better than commonly perceived-but they can be improved. Cancer Biol Ther 2:S134-139Google Scholar
  32. 32.
    Kidd S, Spaeth E, Klopp A, Andreeff M, Hall B, Marini F (2008) The (in) auspicious role of mesenchymal stromal cells in cancer: be it friend or foe. Cytotherapy 10:657–667. CrossRefPubMedGoogle Scholar
  33. 33.
    Klopp AH, Gupta A, Spaeth E, Andreeff M, Marini F (2011) Concise review: dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? Stem Cells 29:11–19. CrossRefPubMedGoogle Scholar
  34. 34.
    Kucerova L, Matuskova M, Hlubinova K, Altanerova V, Altaner C (2010) Tumor cell behaviour modulation by mesenchymal stromal cells. Mol Cancer 9:129. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kucerova L, Zmajkovic J, Toro L, Skolekova S, Demkova L, Matuskova M (2015) Tumor-driven molecular changes in human mesenchymal stromal cells. Cancer Microenviron Off J Int Cancer Microenviron Soc 8:1–14. CrossRefGoogle Scholar
  36. 36.
    Kuzu OF, Nguyen FD, Noory MA, Sharma A (2015) Current state of animal (mouse) modeling in melanoma research. Cancer Growth Metastasis 8:81–94. PubMedPubMedCentralGoogle Scholar
  37. 37.
    Leenaars M, Hooijmans CR, van Veggel N, ter Riet G, Leeflang M, Hooft L, van der Wilt GJ, Tillema A, Ritskes-Hoitinga M (2012) A step-by-step guide to systematically identify all relevant animal studies. Lab Anim 46:24–31. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Li L, Tian H, Yue W, Zhu F, Li S, Li W (2011) Human mesenchymal stem cells play a dual role on tumor cell growth in vitro and in vivo. J Cell Physiol 226:1860–1867. CrossRefPubMedGoogle Scholar
  39. 39.
    Linares MA, Zakaria A, Nizran P (2015) Skin cancer. Prim Care Clin Off Pract 42:645–659. CrossRefGoogle Scholar
  40. 40.
    Liu Y, Zhang Z, Zhang C, Deng W, Lv Q, Chen X, Huang T, Pan L (2016) Adipose-derived stem cells undergo spontaneous osteogenic differentiation in vitro when passaged serially or seeded at low density. Biotech Histochem Off Publ Biol Stain Comm 91:369–376. CrossRefGoogle Scholar
  41. 41.
    Maestroni GJ, Hertens E, Galli P (1999) Factor(s) from nonmacrophage bone marrow stromal cells inhibit Lewis lung carcinoma and B16 melanoma growth in mice. Cell Mol Life Sci CMLS 55:663–667CrossRefPubMedGoogle Scholar
  42. 42.
    Meirelles L, Chagastelles S, Nardi PC NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213. CrossRefGoogle Scholar
  43. 43.
    Melnikova VO, Bolshakov SV, Walker C, Ananthaswamy HN (2004) Genomic alterations in spontaneous and carcinogen-induced murine melanoma cell lines. Oncogene 23:2347. CrossRefPubMedGoogle Scholar
  44. 44.
    Merlino G, Flaherty K, Acquavella N, Day C-P, Aplin A, Holmen S, Topalian S, Van Dyke T, Herlyn M (2013) Meeting report: The future of preclinical mouse models in melanoma treatment is now. Pigment Cell Melanoma Res 26:E8–E14. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Pendleton C, Li Q, Chesler DA, Yuan K, Guerrero-Cazares H, Quinones-Hinojosa A (2013) Mesenchymal stem cells derived from adipose tissue vs bone marrow: in vitro comparison of their tropism towards gliomas. PloS One 8:e58198. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Pessina A, Bonomi A, Coccè V, Invernici G, Navone S, Cavicchini L, Sisto F, Ferrari M, Viganò L, Locatelli A, Ciusani E, Cappelletti G, Cartelli D, Arnaldo C, Parati E, Marfia G, Pallini R, Falchetti ML, Alessandri G (2011) Mesenchymal stromal cells primed with paclitaxel provide a new approach for cancer therapy. PLoS One 6:e28321. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ren G, Zhao X, Wang Y, Zhang X, Chen X, Xu C, Yuan Z, Roberts AI, Zhang L, Zheng B, Wen T, Han Y, Rabson AB, Tischfield JA, Shao C, Shi Y (2012) CCR2-dependent recruitment of macrophages by tumor-educated mesenchymal stromal cells promotes tumor development and is mimicked by TNFα. Cell Stem Cell 11:812–824. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Schadendorf D, Hauschild A (2014) Melanoma in 2013: melanoma—the run of success continues. Nat Rev Clin Oncol 11:75–76. CrossRefPubMedGoogle Scholar
  49. 49.
    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. CrossRefPubMedGoogle Scholar
  50. 50.
    Seltenhammer MH, Sundström E, Meisslitzer-Ruppitsch C, Cejka P, Kosiuk J, Neumüller J, Almeder M, Majdic O, Steinberger P, Losert UM, Stöckl J, Andersson L, Sölkner J, Vetterlein M, Golovko A (2014) Establishment and characterization of a primary and a metastatic melanoma cell line from Grey horses. In Vitro Cell Dev Biol Anim 50:56–65. CrossRefPubMedGoogle Scholar
  51. 51.
    Seo SH, Kim KS, Park SH, Suh YS, Kim SJ, Jeun S-S, Sung YC (2011) The effects of mesenchymal stem cells injected via different routes on modified IL-12-mediated antitumor activity. Gene Ther 18:488–495. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Shadish WR, Brasil ICC, Illingworth DA, White KD, Galindo R, Nagler ED, Rindskopf DM (2009) Using UnGraph to extract data from image files: verification of reliability and validity. Behav Res Methods 41:177–183. CrossRefPubMedGoogle Scholar
  53. 53.
    Spaeth E, Klopp A, Dembinski J, Andreeff M, Marini F (2008) Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther 15:730–738. CrossRefPubMedGoogle Scholar
  54. 54.
    Stagg J, Lejeune L, Paquin A, Galipeau J (2004) Marrow stromal cells for interleukin-2 delivery in cancer immunotherapy. Hum Gene Ther 15:597–608CrossRefPubMedGoogle Scholar
  55. 55.
    StataCorp (2013) Stata statistical software: Release 13. StataCorp LP, College Station, TXGoogle Scholar
  56. 56.
    Sterne JAC, Harbord RM (2004) Funnel plots in meta-analysis. Stata J 4:127–141Google Scholar
  57. 57.
    Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M (2002) Bone marrow-derived mesenchymal stem cells as vehicles for interferon-β delivery into tumors. Cancer Res 62:3603–3608PubMedGoogle Scholar
  58. 58.
    Su DM, Zhang Q, Wang X, He P, Zhu YJ, Zhao J, Rennert OM, Su YA (2009) Two types of human malignant melanoma cell lines revealed by expression patterns of mitochondrial and survival-apoptosis genes: implications for malignant melanoma therapy. Mol Cancer Ther 8:1292–1304. CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Suzuki K, Sun R, Origuchi M, Kanehira M, Takahata T, Itoh J, Umezawa A, Kijima H, Fukuda S, Saijo Y (2011) Mesenchymal stromal cells promote tumor growth through the enhancement of neovascularization. Mol Med 17:579–587. CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Szebeni GJ, Kriston-Pál É, Blazsó P, Katona RL, Novák J, Szabó E, Czibula Á, Fajka-Boja R, Hegyi B, Uher F, Krenács L, Joó G, Monostori É (2012) Identification of galectin-1 as a critical factor in function of mouse mesenchymal stromal cell-mediated tumor promotion. PLoS One. PubMedPubMedCentralGoogle Scholar
  61. 61.
    Thomasset N, Quash G, Doré JF (1982) Diamine oxidase activity in human melanoma cell lines with different tumorigenicity in nude mice. Br J Cancer 46:58–66CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Tyciakova S, Matuskova M, Bohovic R, Polakova K, Toro L, Skolekova S, Kucerova L (2015) Genetically engineered mesenchymal stromal cells producing TNFα have tumour suppressing effect on human melanoma xenograft: AT-MSC/hTNFα in treatment of A375 xenografts. J Gene Med 17:54–67. CrossRefPubMedGoogle Scholar
  63. 63.
    Van der Weyden L, Patton EE, Wood GA, Foote AK, Brenn T, Arends MJ, Adams DJ (2015) Cross-species models of human melanoma. J Pathol 238:152–165. CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Wang J, Ma D, Li Y, Yang Y, Hu X, Zhang W, Fang Q (2014) Targeted delivery of CYP2E1 recombinant adenovirus to malignant melanoma by bone marrow-derived mesenchymal stem cells as vehicles. Anticancer Drugs 25:303–314. CrossRefPubMedGoogle Scholar
  65. 65.
    Xu C, Lin L, Cao G, Chen Q, Shou P, Huang Y, Han Y, Wang Y, Shi Y (2014) Interferon-α-secreting mesenchymal stem cells exert potent antitumor effect in vivo. Oncogene 33:5047–5052. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Marcos Freitas Cordeiro
    • 1
  • Luana Patricia Marmitt
    • 2
  • Ana Paula Horn
    • 1
    • 3
  1. 1.Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências BiológicasUniversidade Federal do Rio Grande (FURG)Rio GrandeBrazil
  2. 2.Programa de Pós-graduação em Ciências da SaúdeUniversidade Federal do Rio Grande (FURG)Rio GrandeBrazil
  3. 3.Laboratório de Histologia, Instituto de Ciências BiológicasUniversidade Federal do Rio Grande (FURG)Rio GrandeBrazil

Personalised recommendations