Skip to main content

Advertisement

Log in

Hematoxylin-stainability of keratohyalin granules is due to the novel component, fibrinogen γ-chain protein

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Hematoxylin-stainability of keratohyalin granules (KHG) using biochemical and immunohistochemical techniques is due to the presence of a fibrinogen γ-chain protein. A protein with a molecular weight of 100 kDa was stained with anti-Ted-H-1 monoclonal antibody and hematoxylin solution (hematoxylin-stainable protein). Since the amino acid sequence of the hematoxylin-stainable protein was to that of fibrinogen γ-chain protein, a peptide was synthesized and an antibody against the peptide was produced. This antibody reacted with the hematoxylin-stainable protein and fibrinogen γ-chain protein on immunoblot analysis and with KHG on immunohistochemical examination. Furthermore, a commercial anti-fibrinogen γ-chain protein antibody (Ab) also reacted with the hematoxylin-stainable protein as well as fibrinogen. In contrast, anti-fibrinogen β-chain protein Ab did not react with the hematoxylin-stainable protein. The fibrinogen γ-chain protein also stained with hematoxylin. These findings suggested that fibrinogen γ-chain protein may be a novel component protein of KHG and may induce the hematoxylin-stainability of KHG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

KHG:

Keratohyalin granules

MoAb:

Monoclonal antibody

Ab:

Antibody

References

  1. Betz RC, Pforr J, Flaquer A, Redler S, Hanneken S, Eigelshoven S, Kortüm AK, Tüting T, Lambert J, De Weert J, Hillmer AM, Schmael C, Wienker TF, Kruse R, Lutz G, Blaumeiser B, Nöthen MM (2007) Loss-of-function mutations in the filaggrin gene and alopecia areata: strong risk factor for a severe course of disease in patients comorbid for atopic disease. J Invest Dermatol 127:2539–2543

    Article  CAS  PubMed  Google Scholar 

  2. Doolittle RE (1984) Fibrinogen and fibrin. Annu Rev Biochem 53:195–2292

    CAS  PubMed  Google Scholar 

  3. Fleckman P, Dale BA, Holbrook KA (1985) Profilaggrin, a high-molecular-weight precursor of filaggrin in human epidermis and cultured keratinocytes. J Invest Dermatol 85:507–512

    Article  CAS  PubMed  Google Scholar 

  4. Geer DJ, Andreadis ST (2003) A novel role of fibrin in epidermal healing: plasminogen-mediated migration and selective detachment of differentiated keratinocytes. J Invest Dermatol 121:1210–1216

    Article  CAS  PubMed  Google Scholar 

  5. Girbal-Neuhauser E, Montèzin M, Croute F, Sebbag M, Simon M, Durieux JJ, Serre G (1997) Normal human epidermal keratinocytes express in vitro specific molecular forms of (pro)filaggrin recognized by rheumatoid arthritis-associated autoantibodies. Mol Med 3:145–156

    CAS  PubMed  Google Scholar 

  6. Girbal-Neuhauser E, Durieux JJ, Arnaud M, Dalbon P, Sebbag M, Vincent C, Simon M, Sehshu T, Masson-Bessière C, Jolivet-Reynaud C, Jolivet M, Serre G (1999) The epitopes targeted by the rheumatoid arthritis-associated antifilaggrin autoantibodies are posttranslationally generated on various sites of (pro)filaggrin by deimination of arginine residues. J Immunol 162:585–594

    CAS  PubMed  Google Scholar 

  7. Hohl D, Mehrel T, Lichti U, Turner ML, Roop DR, Steinert PM (1991) Characterization of human loricrin. Structure and function of a new class of epidermal cell envelope proteins. J Biol Chem 266:6626–6636

    CAS  PubMed  Google Scholar 

  8. Kanzaki H, Morishita Y, Akiyama H, Arata J (1996) Adhesion of Staphylococcus aureus to horny layer: role of fibrinogen. J Dermatol Sci 12:132–139

    Article  CAS  PubMed  Google Scholar 

  9. Kitagawa T, Kanamura T, Wakamatsu H, Kato H, Yano S, Asanuma Y (1978) A new method for preparation of an antiserum to penicillin and its application for novel enzyme immunoassay of penicillin. J Biochem 84:491–494

    CAS  PubMed  Google Scholar 

  10. Kubo M, Van de Water L, Plantefaber LC, Mosesson MW, Simon M, Tonnesen MG, Taichman L, Clark RA (2001) Fibrinogen and fibrin are anti-adhesive for keratinocytes: a mechanism for fibrin eschar slough during wound repair. J Invest Dermatol 117:1369–1381

    Article  CAS  PubMed  Google Scholar 

  11. Lortie LA, Harel J, Fairbrother JM, Dubreuil JD (1991) Immunodot detection of Escherichia coli heat-stable enterotoxin b by using enhanced chemiluminescence reaction. J Clin Microbiol 29:2250–2252

    CAS  PubMed  Google Scholar 

  12. Makino T, Takaishi M, Morohashi M, Huh NH (2001) Hornerin, a novel profilaggrin-like protein and differentiation-specific marker isolated from mouse skin. J Biol Chem 276:47445–47452

    Article  CAS  PubMed  Google Scholar 

  13. Masson-Bessière C, Sebbag M, Girbal-Neuhauser E, Nogueira L, Vincent C, Senshu T, Serre G (2001) The major synovial targets of the rheumatoid arthritis-specific antifilaggrin autoantibodies are deiminated forms of the alpha- and beta-chains of fibrin. J Immunol 166:4177–4184

    PubMed  Google Scholar 

  14. Nomura T, Akiyama M, Sandilands A, Nemoto-Hasebe I, Sakai K, Nagasaki A, Ota M, Hata H, Evans AT, Palmer CN, Shimizu H, McLean WH (2008) Specific filaggrin mutations cause ichthyosis vulgaris and are significantly associated with atopic dermatitis in Japan. J Invest Dermatol 128:1436–1441

    Article  CAS  PubMed  Google Scholar 

  15. Sasaki T, Kudoh J, Ebihara T, Shiohama A, Asakawa S, Shimizu A, Takayanagi A, Dekio I, Sadahira C, Amagai M, Shimizu N (2008) Sequence analysis of filaggrin gene by novel shotgun method in Japanese atopic dermatitis. J Dermatol Sci 51:113–120

    Article  CAS  PubMed  Google Scholar 

  16. Scott IR, Harding CR (1981) Studies on the synthesis and degradation of a high molecular weight, histidine-rich phosphoprotein from mammalian epidermis. Biochim Biophys Acta 669:65–78

    CAS  PubMed  Google Scholar 

  17. Sebbag M, Simon M, Vincent C, Masson-Bessière C, Girbal E, Durieux JJ, Serre G (1995) The antiperinuclear factor and the so-called antikeratin antibodies are the same rheumatoid arthritis-specific autoantibodies. J Clin Invest 95:2672–2679

    Article  CAS  PubMed  Google Scholar 

  18. Simon M, Girbal E, Sebbag M, Gomès-Daudrix V, Vincent C, Salama G, Serre G (1993) The cytokeratin filament-aggregating protein filaggrin is the target of the so-called “antikeratin antibodies”, autoantibodies specific for rheumatoid arthritis. J Clin Invest 92:1387–1393

    Article  CAS  PubMed  Google Scholar 

  19. Takahashi M, Tezuka T, Towatari T, Katunuma N (1990) Properties and nature of a cysteine proteinase inhibitor located in keratohyalin granules of rat epidermis. FEBS Lett 267:261–264

    Article  CAS  PubMed  Google Scholar 

  20. Takahashi M, Tezuka T, Katunuma N (1992) Phosphorylated cystatin α is a natural substrate of epidermal transglutaminase for formation of skin cornified envelope. FEBS Lett 308:79–82

    Article  CAS  PubMed  Google Scholar 

  21. Takahashi M, Horiuchi Y, Yoshida M, Isogai R, Kawada A, Tezuka T (2007) Properties and histochemical application of a novel antibody against trichohyalin granules. Arch Dermatol Res 299:33–39

    Article  CAS  PubMed  Google Scholar 

  22. Takaishi M, Makino T, Morohashi M, Huh NH (2005) Identification of human hornerin and its expression in regenerating and psoriatic skin. J Biol Chem 280:4696–4703

    Article  CAS  PubMed  Google Scholar 

  23. Tezuka T (1975) The extraction and partial purification of the deoxycholate-soluble matrix from human plantar horny layer. Acta Derm Venereol 55:401–412

    CAS  PubMed  Google Scholar 

  24. Tezuka T, Takahashi M (1987) Human hematoxylin-stainable protein of keratohyalin granules origin. I. Extraction and purification. J Invest Dermatol 89:400–404

    Article  CAS  PubMed  Google Scholar 

  25. Union A, Meheus L, Humbel RL, Conrad K, Steiner G, Moereels H, Pottel H, Serre G, DeKeyser F (2002) Identification of citrullinated rheumatoid arthritis-specific epitopes in natural filaggrin relevant for antifilaggrin autoantibody detection by line immunoassay. Arthritis Rheum 46:1185–1195

    Article  CAS  PubMed  Google Scholar 

  26. Yoneda K, Hohl D, McBride OW, Wang M, Cehrs KU, Idler WW, Steinert PM (1992) The human loricrin gene. J Biol Chem 267:18060–18066

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masae Takahashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, M., Horiuchi, Y. & Tezuka, T. Hematoxylin-stainability of keratohyalin granules is due to the novel component, fibrinogen γ-chain protein. Arch Dermatol Res 302, 679–684 (2010). https://doi.org/10.1007/s00403-010-1077-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-010-1077-9

Keywords

Navigation