Skip to main content

Transgenic expression of S100A2 in hairless mouse skin enhances Cxcl13 mRNA in response to solar-simulated radiation


S100A2 is a homodimeric protein that undergoes oxidative cross-linking and translocation from the nucleus to the cytosol in the context of oxidative stress. Suggestive of a role for S100A2 in the cutaneous response to ultraviolet light, we found altered S100A2 immunostaining in photodamaged human skin, and crosslinking of S100A2 after ultraviolet A (UVA) irradiation of normal human keratinocytes (NHK). Skin from mice, rats, and rabbits did not contain S100A2 protein, whereas skin samples from pigs, frogs and humans were strongly positive. Survival after UVA irradiation was significantly greater in NHK compared to mouse keratinocytes, suggesting a protective role for S100A2. To test this hypothesis in vivo, we expressed S100A2 in SKH2/J hairless mice under the control of a bovine keratin 5 promoter, and compared responses of TG and WT mice from 1 to 7 days after a single dose (0.5–1 MED) of solar-simulated radiation (SSR) from UVA-340 bulbs. WT and TG mice manifested a similarly robust response to SSR, characterized by epidermal hyperplasia, marked induction of p21WAF, and a twofold increase in p53. Thymine dimers (TD) were markedly increased in the epidermis and the dermis, but while over 95% of the epidermal TD were removed by 5–6 days, elevated dermal TD persisted nearly unchanged for 7 days. Global transcriptional profiling of WT and TG mice revealed strong induction of multiple transcripts, including keratins K6 and K16, defensin beta 3, S100A8, S100A9, Sprr2i and Sprr2f. However, the only S100A2-dependent difference we observed was an induction of Cxcl13 transcripts in TG, but not WT mice (4.4-fold vs. 0.7-fold, n = 3, P = 0.022). This finding was confirmed in an independent set of mice analyzed by quantitative RT-PCR (8.8-fold vs. 1.2-fold, n = 4, P = 0.001). The finding of persistent dermal DNA damage after suberythemal doses of SSR merits further study.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Allanson M, Reeve VE (2004) Immunoprotective UVA (320–400 nm) irradiation upregulates heme oxygenase-1 in the dermis and epidermis of hairless mouse skin. J Invest Dermatol 122:1030–1036

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Arrigo AP (1999) Gene expression and the thiol redox state. Free Radic Biol Med 27:936–944

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Berton TR, Mitchell DL, Fischer SM, Locniskar MF (1997) Epidermal proliferation but not the quantity of DNA photodamage is correlated with UV-induced mouse skin carcinogenesis. J Invest Dermatol 109:340–347

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Berton TR, Conti CJ, Mitchell DL, Aldaz CM, Lubet RA, Fischer SM (1998) The effect of vitamin E acetate on ultraviolet-induced mouse skin carcinogenesis. Mol Carcinog 23:175–184

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Berton TR, Pavone A, Fischer SM (2001) Ultraviolet-B irradiation alters the cell cycle machinery in murine epidermis in vivo. J Invest Dermatol 117:1171–1178

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Celis JE, Olsen E (1994) A qualitative and quantitative protein database approach identities individual and groups of functionally related proteins that are differentially regulated in simian virus 40 (SV40) transformed human keratinocytes: an overview of the functional changes associated with the transformed phenotype. Electrophoresis 15:309–344

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Chadwick CA, Potten CS, Nikaido O, Matsunaga T, Proby C, Young AR (1995) The detection of cyclobutane thymine dimers, (6–4) photolesions and the Dewar photoisomers in sections of UV-irradiated human skin using specific antibodies, and the demonstration of depth penetration effects. J Photochem Photobiol B 28:163–170

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Crivici A, Ikura M (1995) Molecular and structural basis of target recognition by calmodulin. Annu Rev Biophys Biomol Struct 24:85–116

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    D’Errico M, Lemma T, Calcagnile A, Proietti De Santis L, Dogliotti E (2007) Cell type and DNA damage specific response of human skin cells to environmental agents. Mutat Res 614:37–47

    PubMed  CAS  Google Scholar 

  10. 10.

    Deshpande R, Woods TL, Fu J, Zhang T, Stoll SW, Elder JT (2000) Biochemical characterization of S100A2 in human keratinocytes: subcellular localization, dimerization, and oxidative cross-linking. J Invest Dermatol 115:477–485

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Dhanalakshmi S, Mallikarjuna GU, Singh RP, Agarwal R (2004) Silibinin prevents ultraviolet radiation-caused skin damages in SKH-1 hairless mice via a decrease in thymine dimer positive cells and an up-regulation of p53–p21/Cip1 in epidermis. Carcinogenesis 25:1459–1465

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Donato R, Krieg P, Schuppler M, Koesters R, Mincheva A, Lichter P, Marks F (2001) S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol 33:637–668

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    El-Rifai W, Moskaluk CA, Abdrabbo MK, Harper J, Yoshida C, Riggins GJ, Frierson HF Jr, Powell SM (2002) Gastric cancers overexpress S100A calcium-binding proteins. Cancer Res 62:6823–6826

    PubMed  CAS  Google Scholar 

  14. 14.

    Fisher GJ, Datta SC, Talwar HS, Wang ZQ, Varani J, Kang S, Voorhees JJ (1996) Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature 379:335–339

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Gasparro FP, Brown DB (2000) Photobiology 102: UV sources and dosimetry—the proper use and measurement of “photons as a reagent”. J Invest Dermatol 114:613–615

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Glenney J Jr, Kindy MS, Zokas L (1989) Isolation of a new member of the S100 protein family: amino acid sequence, tissue, and subcellular distribution. J Cell Biol 108:569–578

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Heizmann CW, Cox JA (1998) New perspectives on S100 proteins: a multi-functional Ca(2+)-, Zn(2+)- and Cu(2+)-binding protein family. Biometals 11:383–397

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Hennings H, Michael D, Cheng C, Steinert P, Holbrook K, Yuspa SH (1980) Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell 19:245–254

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Herrlich P, Bohmer FD (2000) Redox regulation of signal transduction in mammalian cells. Biochem Pharmacol 59:35–41

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Hirota K, Murata M, Sachi Y, Nakamura H, Takeuchi J, Mori K, Yodoi J (1999) Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-step mechanism of redox regulation of transcription factor NF-kappaB. J Biol Chem 274:27891–27897

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Hough CD, Cho KR, Zonderman AB, Schwartz DR, Morin PJ (2001) Coordinately up-regulated genes in ovarian cancer. Cancer Res 61:3869–3876

    PubMed  CAS  Google Scholar 

  22. 22.

    Imazawa M, Hibi K, Fujitake S, Kodera Y, Ito K, Akiyama S, Nakao A (2005) S100A2 overexpression is frequently observed in esophageal squamous cell carcinoma. Anticancer Res 25:1247–1250

    PubMed  CAS  Google Scholar 

  23. 23.

    Ivanenkov VV, Gerke V, Minin AA, Plessmann U, Weber K (1993) Transduction of Ca2+ signals upon fertilization of eggs; identification of an S-100 protein as a major Ca(2+)-binding protein. Mech Dev 42:151–158

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Kim SH, Banga S, Jha KK, Ozer HL (1998) SV40-mediated transformation and immortalization of human cells. Dev Biol Stand 94:297–302

    PubMed  CAS  Google Scholar 

  25. 25.

    Kube E, Weber K, Gerke V (1991) Primary structure of human, chicken, and Xenopus laevis p11, a cellular ligand of the Src-kinase substrate, annexin II. Gene 102:255–259

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Latonen L, Laiho M (2005) Cellular UV damage responses—functions of tumor suppressor p53. Biochim Biophys Acta 1755:71–89

    PubMed  CAS  Google Scholar 

  27. 27.

    Lauriola L, Michetti F, Maggiano N, Galli J, Cadoni G, Schafer BW, Heizmann CW, Ranelletti FO (2000) Prognostic significance of the Ca(2+) binding protein S100A2 in laryngeal squamous-cell carcinoma. Int J Cancer 89:345–349

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Lee SW, Tomasetto C, Swisshelm K, Keyomarsi K, Sager R (1992) Down-regulation of a member of the S100 gene family in mammary carcinoma cells and reexpression by azadeoxycytidine treatment. Proc Natl Acad Sci USA 89:2504–2508

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Leigh IM, Navsaria H, Purkis PE, McKay IA, Bowden PE, Riddle PN (1995) Keratins (K16 and K17) as markers of keratinocyte hyperproliferation in psoriasis in vivo and in vitro. Br J Dermatol 133:501–511

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Liu M, Pelling JC (1995) UV-B/A irradiation of mouse keratinocytes results in p53-mediated WAF1/CIP1 expression. Oncogene 10:1955–1960

    PubMed  CAS  Google Scholar 

  31. 31.

    Liu XL, Band H, Gao Q, Wazer DE, Chu Q, Band V (1994) Tumor cell-specific loss of p53 protein in a unique in vitro model of human breast tumor progression. Carcinogenesis 15:1969–1973

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Luther SA, Ansel KM, Cyster JG (2003) Overlapping roles of CXCL13, interleukin 7 receptor alpha, and CCR7 ligands in lymph node development. J Exp Med 197:1191–1198

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Marenholz I, Heizmann CW, Fritz G (2004) S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun 322:1111–1122

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Marenholz I, Lovering RC, Heizmann CW (2006) An update of the S100 nomenclature. Biochim Biophys Acta 1763:1282–1283

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Matsumura Y, Byrne SN, Nghiem DX, Miyahara Y, Ullrich SE (2006) A role for inflammatory mediators in the induction of immunoregulatory B cells. J Immunol 177:4810–4817

    PubMed  CAS  Google Scholar 

  36. 36.

    Meplan C, Richard MJ, Hainaut P (2000) Redox signalling and transition metals in the control of the p53 pathway. Biochem Pharmacol 59:25–33

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Mitchell D (2006) Revisiting the photochemistry of solar UVA in human skin. Proc Natl Acad Sci USA 103:13567–13568

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Moore BW (1965) A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun 19:739–744

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Moore JO, Palep SR, Saladi RN, Gao D, Wang Y, Phelps RG, Lebwohl MG, Wei H (2004) Effects of ultraviolet B exposure on the expression of proliferating cell nuclear antigen in murine skin. Photochem Photobiol 80:587–595

    PubMed  CAS  Google Scholar 

  40. 40.

    Mouret S, Baudouin C, Charveron M, Favier A, Cadet J, Douki T (2006) Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proc Natl Acad Sci USA 103:13765–13770

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Mueller A, Bachi T, Hochli M, Schafer BW, Heizmann CW (1999) Subcellular distribution of S100 proteins in tumor cells and their relocation in response to calcium activation. Histochem Cell Biol 111:453–459

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Mueller A, Schafer BW, Ferrari S, Weibel M, Makek M, Hochli M, Heizmann CW (2005) The calcium-binding protein S100A2 interacts with p53 and modulates its transcriptional activity. J Biol Chem 280:29186–29193

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Ouhtit A, Muller HK, Davis DW, Ullrich SE, McConkey D, Ananthaswamy HN (2000) Temporal events in skin injury and the early adaptive responses in ultraviolet-irradiated mouse skin. Am J Pathol 156:201–207

    PubMed  CAS  Google Scholar 

  44. 44.

    Potts BC, Smith J, Akke M, Macke TJ, Okazaki K, Hidaka H, Case DA, Chazin WJ (1995) The structure of calcyclin reveals a novel homodimeric fold for S100 Ca(2+)-binding proteins. Nat Struct Biol 2:790–796

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Qin X, Zhang S, Oda H, Nakatsuru Y, Shimizu S, Yamazaki Y, Nikaido O, Ishikawa T (1995) Quantitative detection of ultraviolet light-induced photoproducts in mouse skin by immunohistochemistry. Jpn J Cancer Res 86:1041–1048

    PubMed  CAS  Google Scholar 

  46. 46.

    Ravasi T, Hsu K, Goyette J, Schroder K, Yang Z, Rahimi F, Miranda LP, Alewood PF, Hume DA, Geczy C (2004) Probing the S100 protein family through genomic and functional analysis. Genomics 84:10–22

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Reiss M, Brash DE, Munoz-Antonia T, Simon JA, Ziegler A, Vellucci VF, Zhou ZL (1992) Status of the p53 tumor suppressor gene in human squamous carcinoma cell lines. Oncol Res 4:349–357

    PubMed  CAS  Google Scholar 

  48. 48.

    Rittié L, Kansra S, Stoll SW, Li Y, Gudjonsson JE, Shao Y, Michael LE, Fisher GJ, Johnson TM, Elder JT (2007) Differential ErbB1 signaling in squamous cell vs. basal cell carcinoma of the skin. Am J Pathol 170:2089–2099

    PubMed  Article  Google Scholar 

  49. 49.

    Saeki H, Wu MT, Olasz E, Hwang ST (2000) A migratory population of skin-derived dendritic cells expresses CXCR5, responds to B lymphocyte chemoattractant in vitro, and co-localizes to B cell zones in lymph nodes in vivo. Eur J Immunol 30:2808–2814

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Sohnle PG, Hunter MJ, Hahn B, Chazin WJ (2000) Zinc-reversible antimicrobial activity of recombinant calprotectin (Migration inhibitory factor-related proteins 8 and 14). J Infect Dis 182:1272–1275

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Stoll SW, Zhao X, Elder JT (1998) EGF stimulates transcription of CaN19 (S100A2) in HaCaT keratinocytes. J Invest Dermatol 111:1092–1097

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Stoll SW, Chia NV, Nair RP, Woods TL, Stuart P, Henseler T, Jenisch S, Christophers E, Voorhees JJ, Elder JT (2001) S100A2 coding sequence polymorphism: characterization and lack of association with psoriasis. Clin Exp Dermatol 26:79–83

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Stoll SW, Kansra S, Peshick S, Fry DW, Leopold WR, Wiesen JF, Sibilia M, Zhang T, Werb Z, Derynck R, Wagner EF, Elder JT (2001) Differential utilization and localization of ErbB receptor tyrosine kinase activities in intact skin compared to normal and malignant keratinocytes. Neoplasia 3:339–350

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Stradal TB, Troxler H, Heizmann CW, Gimona M (2000) Mapping the zinc ligands of S100A2 by site-directed mutagenesis. J Biol Chem 275:13219–13227

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Tan M, Heizmann CW, Guan K, Schafer BW, Sun Y (1999) Transcriptional activation of the human S100A2 promoter by wild-type p53. FEBS Lett 445:265–268

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Vallat VP, Gilleaudeau P, Battat L, Wolfe J, Nabeya R, Heftler N, Hodak E, Gottlieb AB, Krueger JG (1994) PUVA bath therapy strongly suppresses immunological and epidermal activation in psoriasis: a possible cellular basis for remittive therapy. J Exp Med 180:283–296

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Varani J, Dame MK, Rittie L, Fligiel SE, Kang S, Fisher GJ, Voorhees JJ (2006) Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am J Pathol 168:1861–1868

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Vellucci VF, Germino FJ, Reiss M (1995) Cloning of putative growth regulatory genes from primary human keratinocytes by subtractive hybridization. Gene 166:213–220

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Xia L, Stoll SW, Liebert M, Ethier SP, Carey T, Esclamado R, Carroll W, Johnson TM, Elder JT (1997) CaN19 expression in benign and malignant hyperplasias of the skin and oral mucosa: evidence for a role in regenerative differentiation. Cancer Res 57:3055–3062

    PubMed  CAS  Google Scholar 

  60. 60.

    Xu Y, Tan LJ, Grachtchouk V, Voorhees JJ, Fisher GJ (2005) Receptor-type protein-tyrosine phosphatase-kappa regulates epidermal growth factor receptor function. J Biol Chem 280:42694–42700

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Young AR, Chadwick CA, Harrison GI, Nikaido O, Ramsden J, Potten CS (1998) The similarity of action spectra for thymine dimers in human epidermis and erythema suggests that DNA is the chromophore for erythema. J Invest Dermatol 111:982–988

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Zech VF, Dlaska M, Tzankov A, Hilbe W (2006) Prognostic and diagnostic relevance of hnRNP A2/B1, hnRNP B1 and S100 A2 in non-small cell lung cancer. Cancer Detect Prev 30:395–402

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Zhang T, Woods TL, Elder JT (2002) Differential responses of S100A2 to oxidative stress and increased intracellular calcium in normal, immortalized, and malignant human keratinocytes. J Invest Dermatol 119:1196–1201

    PubMed  Article  CAS  Google Scholar 

Download references


We thank Dr. Gary Fisher for samples of chronically photodamaged versus photoprotected human skin, and Dr. James Varani for samples of normal human skin xenografted onto SCID mice. This work was supported by the Veteran Affairs Merit Review and the Babcock Memorial Trust. JTE is supported by the Ann Arbor Veterans Affairs Hospital.

Author information



Corresponding author

Correspondence to James T. Elder.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 312 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, Y., Gudjonsson, J.E., Woods, T.L. et al. Transgenic expression of S100A2 in hairless mouse skin enhances Cxcl13 mRNA in response to solar-simulated radiation. Arch Dermatol Res 301, 205–217 (2009).

Download citation


  • S100 proteins
  • DNA repair
  • p53
  • p21
  • Thymine dimers
  • Cxcl13