Evaluation of the accuracy of resected bone thickness based on patient-specific instrumentation during total knee arthroplasty

Abstract

Background

In total knee arthroplasty (TKA) using patient-specific instrumentation (PSI), the correlation between the preoperative surgical plan and intraoperative resection size is unclear. The aims of this study were to evaluate whether the computed tomography (CT)-based PSI surgical plan can be executed accurately and to determine the accuracy of bone resection in TKA using PSI.

Methods

Data of 45 consecutive knees undergoing TKA using CT-based PSI were retrospectively evaluated. The preoperative plan was prepared using three-dimensional CT acquisitions of the hip, knee, and ankle joints. Resected bone thicknesses of the femoral condyle of the distal medial, distal lateral, posterior medial, posterior lateral, and medial and lateral tibial plateaus were measured with a Vernier caliper intraoperatively. Then these respective measurements were compared with those in the preoperative CT-predicted bone resection surgical plan, and the measured thickness of resection was subtracted from the planned resection thickness. Errors were defined as: acceptable, ≤ 1.5 mm; borderline, 1.5–2.5 mm; and outliers,  > 2.5 mm.

Results

Overall, 22 (48.9%) knees had no outliers. There were 20 (44.4%) and 3 (6.7%) knees in which only 1 and 2 resection planes were outliers, respectively. The posterior medial tibial plateau had the lowest proportion of acceptable cuts (44.4%). Posterior femoral resection including the medial and lateral condyles had more outliers (n = 18/90 cuts, 20.0%) (p < 0.001) than the tibial condyles (n = 3/90 cuts, 3.3%) and distal femoral cuts (n = 6/90 cuts, 6.7%). The posterior surface of the femur, where the incidence of outliers was higher, tended to have a higher proportion of undercuts than other surfaces of the femur (> 80%).

Conclusions

PSI showed only fair-to-moderate accuracy. The cutting guide for the posterior femur was less accurate than that for the tibia and distal femur. Specific attention is required when cutting the posterior femur. The PSI design needs to be improved to reduce errors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Abdel MP, Oussedik S, Parratte S, Lustig S, Haddad FS (2014) Coronal alignment in total knee replacement: historical review, contemporary analysis, and future direction. Bone Jt J 96(7):857–862. https://doi.org/10.1302/0301-620x.96b7.33946

    Article  Google Scholar 

  2. 2.

    Liu HX, Shang P, Ying XZ, Zhang Y (2016) Shorter survival rate in varus-aligned knees after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 24(8):2663–2671. https://doi.org/10.1007/s00167-015-3781-7

    Article  PubMed  Google Scholar 

  3. 3.

    Hafez MA, Chelule KL, Seedhom BB, Sherman KP (2006) Computer-assisted total knee arthroplasty using patient-specific templating. Clin Orthop Relat Res 444:184–192. https://doi.org/10.1097/01.blo.0000201148.06454.ef

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Thienpont E, Schwab PE, Fennema P (2017) Efficacy of patient-specific instruments in total knee arthroplasty: a systematic review and meta-analysis. J Bone Jt Surg Am 99(6):521–530. https://doi.org/10.2106/jbjs.16.00496

    Article  Google Scholar 

  5. 5.

    Schotanus MG, Boonen B, Kort NP (2016) Patient specific guides for total knee arthroplasty are ready for primetime. World J Orthop 7(1):61–68. https://doi.org/10.5312/wjo.v7.i1.61

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    McAuliffe MJ, Beer BR, Hatch JJ, Crawford RW, Cuthbert AR, Donnelly WJ (2019) Impact of image-derived instrumentation on total knee arthroplasty revision rates: an analysis of 83,823 procedures from the Australian Orthopaedic Association National Joint Replacement Registry. J Bone Jt Surg Am 101(7):580–588. https://doi.org/10.2106/jbjs.18.00326

    Article  Google Scholar 

  7. 7.

    Yaffe M, Luo M, Goyal N, Chan P, Patel A, Cayo M, Stulberg SD (2014) Clinical, functional, and radiographic outcomes following total knee arthroplasty with patient-specific instrumentation, computer-assisted surgery, and manual instrumentation: a short-term follow-up study. Int J Comput Assist Radiol Surg 9(5):837–844. https://doi.org/10.1007/s11548-013-0968-6

    Article  PubMed  Google Scholar 

  8. 8.

    Spencer BA, Mont MA, McGrath MS, Boyd B, Mitrick MF (2009) Initial experience with custom-fit total knee replacement: intra-operative events and long-leg coronal alignment. Int Orthop 33(6):1571–1575. https://doi.org/10.1007/s00264-008-0693-x

    Article  PubMed  Google Scholar 

  9. 9.

    DeHaan AM, Adams JR, DeHart ML, Huff TW (2014) Patient-specific versus conventional instrumentation for total knee arthroplasty: peri-operative and cost differences. J Arthroplasty 29(11):2065–2069. https://doi.org/10.1016/j.arth.2014.06.019

    Article  PubMed  Google Scholar 

  10. 10.

    Chen JY, Yeo SJ, Yew AK, Tay DK, Chia SL, Lo NN, Chin PL (2014) The radiological outcomes of patient-specific instrumentation versus conventional total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 22(3):630–635. https://doi.org/10.1007/s00167-013-2638-1

    Article  PubMed  Google Scholar 

  11. 11.

    Boonen B, Schotanus MG, Kort NP (2012) Preliminary experience with the patient-specific templating total knee arthroplasty. Acta Orthop 83(4):387–393. https://doi.org/10.3109/17453674.2012.711700

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Marimuthu K, Chen DB, Harris IA, Wheatley E, Bryant CJ, MacDessi SJ (2014) A multi-planar CT-based comparative analysis of patient-specific cutting guides with conventional instrumentation in total knee arthroplasty. J Arthroplasty 29(6):1138–1142. https://doi.org/10.1016/j.arth.2013.12.019

    Article  PubMed  Google Scholar 

  13. 13.

    Nabavi A, Olwill CM, Do M, Wanasawage T, Harris IA (2017) Patient-specific instrumentation for total knee arthroplasty. J Orthop Surg (Hong Kong) 25(1):2309499016684754. https://doi.org/10.1177/2309499016684754

    Article  Google Scholar 

  14. 14.

    Anwar R, Kini SG, Sait S, Bruce WJ (2016) Early clinical and radiological results of total knee arthroplasty using patient-specific guides in obese patients. Arch Orthop Trauma Surg 136(2):265–270. https://doi.org/10.1007/s00402-015-2399-z

    Article  PubMed  Google Scholar 

  15. 15.

    Scholes C, Sahni V, Lustig S, Parker DA, Coolican MR (2014) Patient-specific instrumentation for total knee arthroplasty does not match the pre-operative plan as assessed by intra-operative computer-assisted navigation. Knee Surg Sports Traumatol Arthrosc 22(3):660–665. https://doi.org/10.1007/s00167-013-2670-1

    Article  PubMed  Google Scholar 

  16. 16.

    Silva A, Sampaio R, Pinto E (2014) Patient-specific instrumentation improves tibial component rotation in TKA. Knee Surg Sports Traumatol Arthrosc 22(3):636–642. https://doi.org/10.1007/s00167-013-2639-0

    Article  PubMed  Google Scholar 

  17. 17.

    Nankivell M, West G, Pourgiezis N (2015) Operative efficiency and accuracy of patient-specific cutting guides in total knee replacement. ANZ J Surg 85(6):452–455. https://doi.org/10.1111/ans.12906

    Article  PubMed  Google Scholar 

  18. 18.

    Yeo CH, Jariwala A, Pourgiezis N, Pillai A (2012) Assessing the accuracy of bone resection by cutting blocks in patient-specific total knee replacements. ISRN Orthop 2012:509750. https://doi.org/10.5402/2012/509750

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Nizam I, Batra AV (2018) Accuracy of bone resection in total knee arthroplasty using CT assisted-3D printed patient specific cutting guides. SICOT J 4:29. https://doi.org/10.1051/sicotj/2018032

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Wernecke GC, Taylor S, Wernecke P, MacDessi SJ, Chen DB (2017) Resection accuracy of patient-specific cutting guides in total knee replacement. ANZ J Surg 87(11):921–924. https://doi.org/10.1111/ans.14143

    Article  PubMed  Google Scholar 

  21. 21.

    Levy YD, An VVG, Shean CJW, Groen FR, Walker PM, Bruce WJM (2017) The accuracy of bony resection from patient-specific guides during total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 25(6):1678–1685. https://doi.org/10.1007/s00167-016-4254-3

    Article  PubMed  Google Scholar 

  22. 22.

    Zambianchi F, Colombelli A, Digennaro V, Marcovigi A, Mugnai R, Fiacchi F, Sandoni D, Belluati A, Catani F (2017) Assessment of patient-specific instrumentation precision through bone resection measurements. Knee Surg Sports Traumatol Arthrosc 25(9):2841–2848. https://doi.org/10.1007/s00167-015-3949-1

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Behrend H, Giesinger K, Giesinger JM, Kuster MS (2012) The “forgotten joint” as the ultimate goal in joint arthroplasty: validation of a new patient-reported outcome measure. J Arthroplasty 27(3):430-436.e431. https://doi.org/10.1016/j.arth.2011.06.035

    Article  PubMed  Google Scholar 

  24. 24.

    Freeman MAR, Pinskerova V (2005) The movement of the normal tibio-femoral joint. J Biomech 38(2):197–208. https://doi.org/10.1016/j.jbiomech.2004.02.006

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Otani T, Whiteside LA, White SE (1993) Cutting errors in preparation of femoral components in total knee arthroplasty. J Arthroplasty 8(5):503–510

    CAS  Article  Google Scholar 

  26. 26.

    Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16(4):494–502. https://doi.org/10.1136/ard.16.4.494

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Guillard G, Vincent GR, Brett A, Conaghan PG, Bowes MA (2017) Cartilage thickness, denudation and Kl grade: a study of medial femorotibial joints in 8890 knees from the osteoarthritis initiative. Osteoarthr Cartil 25:S223–S224. https://doi.org/10.1016/j.joca.2017.02.387

    Article  Google Scholar 

  28. 28.

    Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48(3):452–458. https://doi.org/10.1038/bmt.2012.244

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Viceconti M, Lattanzi R, Antonietti B, Paderni S, Olmi R, Sudanese A, Toni A (2003) CT-based surgical planning software improves the accuracy of total hip replacement preoperative planning. Med Eng Phys 25(5):371–377

    CAS  Article  Google Scholar 

  30. 30.

    Ensini A, Timoncini A, Cenni F, Belvedere C, Fusai F, Leardini A, Giannini S (2014) Intra- and post-operative accuracy assessments of two different patient-specific instrumentation systems for total knee replacement. Knee Surg Sports Traumatol Arthrosc 22(3):621–629. https://doi.org/10.1007/s00167-013-2667-9

    Article  PubMed  Google Scholar 

  31. 31.

    Hafez MA, Moholkar K (2017) Patient-specific instruments: advantages and pitfalls. SICOT J 3:66–66. https://doi.org/10.1051/sicotj/2017054

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Seon JK, Park HW, Yoo SH, Song EK (2016) Assessing the accuracy of patient-specific guides for total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 24(11):3678–3683. https://doi.org/10.1007/s00167-014-3429-z

    Article  PubMed  Google Scholar 

  33. 33.

    Huijbregts HJ, Khan RJ, Fick DP, Hall MJ, Punwar SA, Sorensen E, Reid MJ, Vedove SD, Haebich S (2016) Component alignment and clinical outcome following total knee arthroplasty: a randomised controlled trial comparing an intramedullary alignment system with patient-specific instrumentation. Bone Jt J 98(8):1043–1049. https://doi.org/10.1302/0301-620x.98b8.37240

    Article  Google Scholar 

  34. 34.

    Abdel MP, Parratte S, Blanc G, Ollivier M, Pomero V, Viehweger E, Argenson JN (2014) No benefit of patient-specific instrumentation in TKA on functional and gait outcomes: a randomized clinical trial. Clin Orthop Relat Res 472(8):2468–2476. https://doi.org/10.1007/s11999-014-3544-7

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Chareancholvanich K, Narkbunnam R, Pornrattanamaneewong C (2013) A prospective randomised controlled study of patient-specific cutting guides compared with conventional instrumentation in total knee replacement. Bone Jt J 95(3):354–359. https://doi.org/10.1302/0301-620X.95B3.29903

    Article  Google Scholar 

  36. 36.

    Chan WC, Pinder E, Loeffler M (2016) Patient-specific instrumentation versus conventional instrumentation in total knee arthroplasty. J Orthop Surg (Hong Kong) 24(2):175–178. https://doi.org/10.1177/1602400211

    Article  Google Scholar 

  37. 37.

    Yamamura K, Minoda Y, Mizokawa S, Ohta Y, Sugama R, Nakamura S, Ueyama H, Nakamura H (2017) Novel alignment measurement technique for total knee arthroplasty using patient specific instrumentation. Arch Orthop Trauma Surg 137(3):401–407. https://doi.org/10.1007/s00402-017-2628-8

    Article  PubMed  Google Scholar 

  38. 38.

    Cenni F, Timoncini A, Ensini A, Tamarri S, Belvedere C, D’Angeli V, Giannini S, Leardini A (2014) Three-dimensional implant position and orientation after total knee replacement performed with patient-specific instrumentation systems. J Orthop Res 32(2):331–337. https://doi.org/10.1002/jor.22513

    Article  PubMed  Google Scholar 

  39. 39.

    Bugbee WD, Mizu-Uchi H, Patil S, D’Lima D (2013) Accuracy of implant placement utilizing customized patient instrumentation in total knee arthroplasty. Adv Orthop 2013:891210. https://doi.org/10.1155/2013/891210

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Yamamura K, Minoda Y, Sugama R, Ohta Y, Nakamura S, Ueyama H, Nakamura H (2020) Design improvement in patient-specific instrumentation for total knee arthroplasty improved the accuracy of the tibial prosthetic alignment in the coronal and axial planes. Knee Surg Sports Traumatol Arthrosc 28(5):1560–1567. https://doi.org/10.1007/s00167-019-05571-7

    Article  PubMed  Google Scholar 

  41. 41.

    Kwon OR, Kang KT, Son J, Suh DS, Heo DB, Koh YG (2017) Patient-specific instrumentation development in TKA: 1st and 2nd generation designs in comparison with conventional instrumentation. Arch Orthop Trauma Surg 137(1):111–118. https://doi.org/10.1007/s00402-016-2618-2

    Article  PubMed  Google Scholar 

  42. 42.

    Biant LC, Yeoh K, Walker PM, Bruce WJ, Walsh WR (2008) The accuracy of bone resections made during computer navigated total knee replacement. Do we resect what the computer plans we resect? Knee 15(3):238–241. https://doi.org/10.1016/j.knee.2008.01.012

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Koji Fukui for his assistance with this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kazumasa Yamamura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yamamura, K., Inori, F. & Konishi, S. Evaluation of the accuracy of resected bone thickness based on patient-specific instrumentation during total knee arthroplasty. Arch Orthop Trauma Surg (2021). https://doi.org/10.1007/s00402-021-03805-3

Download citation

Keywords

  • Total knee arthroplasty
  • Patient-specific instrumentation
  • Computed tomography
  • Preoperative three-dimensional plan