Skip to main content

Advertisement

Log in

No added value using SPECT/CT to analyze persistent symptoms after anterior cruciate ligament reconstruction

  • Arthroscopy and Sports Medicine
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

A Correction to this article was published on 20 March 2019

This article has been updated

Abstract

Purpose

To evaluate the diagnostic and clinical value of SPECT/CT compared to the standard algorithm for patients with persistent symptoms after anterior cruciate ligament reconstructions. The standard algorithm uses clinical information, conventional radiographs, MRI and CT scan, while the trial algorithm uses the same information but SPECT/CT in addition.

Methods

In a diagnostic comparative trial three experienced surgeons evaluated 23 consecutive patients with persistent symptoms after ACL reconstruction using first standard and second the trial algorithm with a time interval. Each rater had to establish a diagnosis and therapeutic decision with each algorithm. On MRI, graft continuity, bone marrow edema, chondral and meniscal lesions, femoral notch osteophytes were evaluated. Bone tracer uptake in SPECT/CT was anatomically analyzed and compared with MRI findings. MRI findings and SPECT/CT tracer uptake were correlated using Spearman’s rho test.

Results

Additional SPECT/CT analysis did not change diagnosis in any case and did not correlate with clinical graft integrity. Treatment decisions remained unchanged as well. Chondral lesions, arthritic changes, meniscal lesions, graft impingement are best visualized in MRI and showed correspondent tracer uptake in SPECT/CT. Tunnel position was well classified with standard CT scan and showed no correlation with SPECT/CT tracer uptake.

Conclusion

Information derived by SPECT/CT in addition to the standard algorithm using clinical information, X-rays, MRI, and CT scan did not change the diagnosis or treatment plan. There is currently no justification to implement SPECT/CT for patients with persistent symptoms after anterior cruciate ligament reconstructions.

Level of evidence

Level II: diagnostic comparative study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Change history

  • 20 March 2019

    The shared first authorship of Christian Egloff, MD and Lukas Huber was always planned and correctly acknowledged.

References

  1. Granan LP, Bahr R, Steindal K, Furnes O, Engebretsen L (2008) Development of a national cruciate ligament surgery registry: the Norwegian National Knee Ligament Registry. Am J Sports Med 36(2):308–315. https://doi.org/10.1177/0363546507308939

    Article  Google Scholar 

  2. Lind M, Menhert F, Pedersen AB (2009) The first results from the Danish ACL reconstruction registry: epidemiologic and 2 year follow-up results from 5,818 knee ligament reconstructions. Knee Surg Sports Traumatol Arthrosc 17(2):117–124. https://doi.org/10.1007/s00167-008-0654-3

    Article  Google Scholar 

  3. Kamath GV, Redfern JC, Greis PE, Burks RT (2011) Revision anterior cruciate ligament reconstruction. Am J Sports Med 39(1):199–217. https://doi.org/10.1177/0363546510370929

    Article  Google Scholar 

  4. Trojani C, Sbihi A, Djian P, Potel JF, Hulet C, Jouve F, Bussiere C, Ehkirch FP, Burdin G, Dubrana F, Beaufils P, Franceschi JP, Chassaing V, Colombet P, Neyret P (2011) Causes for failure of ACL reconstruction and influence of meniscectomies after revision. Knee Surg Sports Traumatol Arthrosc 19(2):196–201. https://doi.org/10.1007/s00167-010-1201-6

    Article  Google Scholar 

  5. Finsterbush A, Frankl U, Matan Y, Mann G (1990) Secondary damage to the knee after isolated injury of the anterior cruciate ligament. Am J Sports Med 18(5):475–479. https://doi.org/10.1177/036354659001800505

    Article  CAS  PubMed  Google Scholar 

  6. Araki D, Kuroda R, Matsumoto T, Nagamune K, Matsushita T, Hoshino Y, Oka S, Nishizawa Y, Kurosaka M (2014) Three-dimensional analysis of bone tunnel changes after anatomic double-bundle anterior cruciate ligament reconstruction using multidetector-row computed tomography. Am J Sports Med 42(9):2234–2241. https://doi.org/10.1177/0363546514540274

    Article  PubMed  Google Scholar 

  7. Anderson AF, Anderson CN, Gorman TM, Cross MB, Spindler KP (2007) Radiographic measurements of the intercondylar notch: are they accurate? Arthrosc J Arthrosc Relat Surg 23(3):261–268. https://doi.org/10.1016/j.arthro.2006.11.003 (268 e261–262)

    Article  Google Scholar 

  8. Marchant MH Jr, Willimon SC, Vinson E, Pietrobon R, Garrett WE, Higgins LD (2010) Comparison of plain radiography, computed tomography, and magnetic resonance imaging in the evaluation of bone tunnel widening after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 18(8):1059–1064. https://doi.org/10.1007/s00167-009-0952-4

    Article  Google Scholar 

  9. Van Eck CF, Martins CA, Kopf S, Lertwanich P, Fu FH, Tashman S (2011) Correlation between the 2-dimensional notch width and the 3-dimensional notch volume: a cadaveric study. Arthrosc J Arthrosc Relat Surg 27(2):207–212. https://doi.org/10.1016/j.arthro.2010.06.027

    Article  Google Scholar 

  10. Biercevicz AM, Akelman MR, Fadale PD, Hulstyn MJ, Shalvoy RM, Badger GJ, Tung GA, Oksendahl HL, Fleming BC (2015) MRI volume and signal intensity of ACL graft predict clinical, functional, and patient-oriented outcome measures after ACL reconstruction. Am J Sports Med 43(3):693–699. https://doi.org/10.1177/0363546514561435

    Article  Google Scholar 

  11. Bencardino JT, Beltran J, Feldman MI, Rose DJ (2009) MR imaging of complications of anterior cruciate ligament graft reconstruction. Radiogr Rev 29(7):2115–2126. https://doi.org/10.1148/rg.297095036

    Article  Google Scholar 

  12. Hirschmann MT, Mathis D, Afifi FK, Rasch H, Henckel J, Amsler F, Wagner CR, Friederich NF, Arnold MP (2013) Single photon emission computerized tomography and conventional computerized tomography (SPECT/CT) for evaluation of patients after anterior cruciate ligament reconstruction: a novel standardized algorithm combining mechanical and metabolic information. Knee Surg Sports Traumatol Arthrosc 21(4):965–974. https://doi.org/10.1007/s00167-012-2083-6

    Article  Google Scholar 

  13. Knupp M, Pagenstert GI, Barg A, Bolliger L, Easley ME, Hintermann B (2009) SPECT–CT compared with conventional imaging modalities for the assessment of the varus and valgus malaligned hindfoot. J Orthop Res 27(11):1461–1466. https://doi.org/10.1002/jor.20922

    Article  Google Scholar 

  14. Ryan PJ, Reddy K, Fleetcroft J (1998) A prospective comparison of clinical examination, MRI, bone SPECT, and arthroscopy to detect meniscal tears. Clin Nucl Med 23(12):803–806

    Article  CAS  PubMed  Google Scholar 

  15. Tahmasebi MN, Saghari M, Moslehi M, Gholamrezanezhad A (2005) Comparison of SPECT bone scintigraphy with MRI for diagnosis of meniscal tears. BMC Nucl Med 5(1):2. https://doi.org/10.1186/1471-2385-5-2

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rechsteiner J, Hirschmann MT, Dordevic M, Falkowski AL, Testa EA, Amsler F, Hirschmann A (2018) Meniscal pathologies on MRI correlate with increased bone tracer uptake in SPECT/CT. Eur Radiol 28(11):4696–4704. https://doi.org/10.1007/s00330-018-5466-3

    Article  PubMed  Google Scholar 

  17. Hirschmann MT, Davda K, Rasch H, Arnold MP, Friederich NF (2011) Clinical value of combined single photon emission computerized tomography and conventional computer tomography (SPECT/CT) in sports medicine. Sports Med Arthrosc Rev 19(2):174–181. https://doi.org/10.1097/JSA.0b013e3181ec8707

    Article  PubMed  Google Scholar 

  18. Leumann A, Valderrabano V, Plaass C, Rasch H, Studler U, Hintermann B, Pagenstert GI (2011) A novel imaging method for osteochondral lesions of the talus—comparison of SPECT–CT with MRI. Am J Sports Med 39(5):1095–1101. https://doi.org/10.1177/0363546510392709

    Article  PubMed  Google Scholar 

  19. Hirschmann MT, Mathis D, Rasch H, Amsler F, Friederich NF, Arnold MP (2013) SPECT/CT tracer uptake is influenced by tunnel orientation and position of the femoral and tibial ACL graft insertion site. Int Orthop 37(2):301–309. https://doi.org/10.1007/s00264-012-1704-5

    Article  Google Scholar 

  20. Duc SR, Zanetti M, Kramer J, Kach KP, Zollikofer CL, Wentz KU (2005) Magnetic resonance imaging of anterior cruciate ligament tears: evaluation of standard orthogonal and tailored paracoronal images. Acta Radiol 46(7):729–733

    Article  CAS  PubMed  Google Scholar 

  21. Speer KP, Spritzer CE, Bassett FH III, Feagin JA Jr, Garrett WE Jr (1992) Osseous injury associated with acute tears of the anterior cruciate ligament. Am J Sports Med 20(4):382–389

    Article  CAS  Google Scholar 

  22. Mainil-Varlet P, Aigner T, Brittberg M, Bullough P, Hollander A, Hunziker E, Kandel R, Nehrer S, Pritzker K, Roberts S, Stauffer E, International Cartilage Repair S (2003) Histological assessment of cartilage repair: a report by the Histology Endpoint Committee of the International Cartilage Repair Society (ICRS). J Bone Jt Surg Am 85-A(Suppl 2):45–57

    Article  Google Scholar 

  23. Bernard M, Hertel P, Hornung H, Cierpinski T (1997) Femoral insertion of the ACL. Radiographic quadrant method. Am J Knee Surg 10(1):14–21 (discussion 21-12)

    CAS  Google Scholar 

  24. Sommer C, Friederich NF, Muller W (2000) Improperly placed anterior cruciate ligament grafts: correlation between radiological parameters and clinical results. Knee Surg Sports Traumatol Arthrosc 8(4):207–213. https://doi.org/10.1007/s001670000125

    Article  CAS  Google Scholar 

  25. Hosseini A, Lodhia P, Van de Velde SK, Asnis PD, Zarins B, Gill TJ, Li G (2012) Tunnel position and graft orientation in failed anterior cruciate ligament reconstruction: a clinical and imaging analysis. Int Orthop 36(4):845–852. https://doi.org/10.1007/s00264-011-1333-4

    Article  PubMed  Google Scholar 

  26. Amis AA, Beynnon B, Blankevoort L, Chambat P, Christel P, Durselen L, Friederich N, Grood E, Hertel P, Jakob R et al (1994) Proceedings of the ESSKA scientific workshop on reconstruction of the anterior and posterior cruciate ligaments. Knee Surg Sports Traumatol Arthrosc 2(3):124–132

    Article  CAS  PubMed  Google Scholar 

  27. Amis AA, Jakob RP (1998) Anterior cruciate ligament graft positioning, tensioning and twisting. Knee Surg Sports Traumatol Arthrosc 6(Suppl 1):S2–S12. https://doi.org/10.1007/s001670050215

    Article  Google Scholar 

  28. Staubli HU, Rauschning W (1994) Tibial attachment area of the anterior cruciate ligament in the extended knee position. Anatomy and cryosections in vitro complemented by magnetic resonance arthrography in vivo. Knee Surg Sports Traumatol Arthrosc 2(3):138–146

    Article  CAS  PubMed  Google Scholar 

  29. O’Duffy EK, Clunie GP, Gacinovic S, Edwards JC, Bomanji JB, Ell PJ (1998) Foot pain: specific indications for scintigraphy. Br J Rheumatol 37(4):442–447

    Article  PubMed  Google Scholar 

  30. Cronbach L (1951) Coefficient alpha as a measure of test score. Psychometrika 16:297–334

    Article  Google Scholar 

  31. Group M, Wright RW, Huston LJ, Spindler KP, Dunn WR, Haas AK, Allen CR, Cooper DE, DeBerardino TM, Lantz BB, Mann BJ, Stuart MJ (2010) Descriptive epidemiology of the Multicenter ACL Revision Study (MARS) cohort. Am J Sports Med 38(10):1979–1986. https://doi.org/10.1177/0363546510378645

    Article  Google Scholar 

  32. Mathis DT, Hirschmann A, Falkowski AL, Kiekara T, Amsler F, Rasch H, Hirschmann MT (2017) Increased bone tracer uptake in symptomatic patients with ACL graft insufficiency: a correlation of MRI and SPECT/CT findings. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-017-4588-5

    Article  PubMed  Google Scholar 

  33. Mathis DT, Hirschmann A, Falkowski AL, Kiekara T, Amsler F, Rasch H, Hirschmann MT (2018) Increased bone tracer uptake in symptomatic patients with ACL graft insufficiency: a correlation of MRI and SPECT/CT findings. Knee Surg Sports Traumatol Arthrosc 26(2):563–573. https://doi.org/10.1007/s00167-017-4588-5

    Article  Google Scholar 

Download references

Acknowledgements

Data collection and correlation analysis were mainly conducted by the medical student Lukas Huber under the guidance of the first author and final approval and initial set-up of the senior author. This work will be used to apply for the Medical Doctor degree of Lukas Huber (dissertation at the University of Basel, Switzerland).

Funding

There is no funding source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Egloff.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egloff, C., Huber, L., Wurm, M. et al. No added value using SPECT/CT to analyze persistent symptoms after anterior cruciate ligament reconstruction. Arch Orthop Trauma Surg 139, 807–816 (2019). https://doi.org/10.1007/s00402-019-03117-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-019-03117-7

Keywords

Navigation