Skip to main content
Log in

Assessment of pelvic tilt in anteroposterior radiographs by means of tilt ratios

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

In anteposterior (AP) radiographs, cup position in total hip arthroplasty and acetabular anatomy in hip-preserving surgery are highly influenced by pelvic tilt. The sagittal rotation of the anterior pelvic plane is an important measurement of pelvic tilt during hip surgery. Thus, correct evaluation of cup position and acetabular parameters requires the assessment of pelvic tilt in AP radiographs.

Methods

Changes in pelvic tilt inversely change the height of the lesser pelvis and the obturator foramen in AP radiographs. Tilt ratios were calculated by means of these two parameters in simulated radiographs for ten male and ten female pelvises in defined tilt positions. A tilt formula obtained by exponential regression analysis was evaluated by two blinded investigators by means of 14 simulated AP radiographs of the pelvis with pelvic tilts ranging from + 15° to − 15°.

Results

No differences were found between male and female tilt ratios for each 5° step of simulated pelvic tilt. Pelvic tilt and tilt ratios correlated exponentially. Using the tilt formula, the two blinded investigators were able to assess pelvic tilt with high conformity, a mean relative error of + 0.4° (SD ± 4.6°), and a mean absolute error of 3.9° (SD ± 2.3°). Neutral pelvic tilt is indicated by a tilt ratio of 0.5 when the height of the lesser pelvis is twice the height of the obturator foramen.

Conclusion

The analysis and interpretation of cup position and acetabular parameters may be improved by our method for assessing pelvic tilt in AP radiographs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Benditz A, Boluki D, Weber M et al (2017) Comparison of Lumbar Lordosis in Lateral Radiographs in Standing Position with supine MR Imaging in consideration of the Sacral Slope (Vergleich der lumbalen Lordose im seitlichen Rontgenbild im Stehen und der MRT unter besonderer Berucksichtigung des “Sacral Slope”). Rofo 189(3):233–239. https://doi.org/10.1055/s-0042-120112

    Article  PubMed  Google Scholar 

  2. Roussouly P, Gollogly S, Berthonnaud E et al (2005) Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine (Phila Pa 1976) 30(3):346–353

    Article  Google Scholar 

  3. Labelle H, Mac-Thiong J-M, Roussouly P (2011) Spino-pelvic sagittal balance of spondylolisthesis: a review and classification. Eur Spine J 20 Suppl 5: 641–646. https://doi.org/10.1007/s00586-011-1932-1

  4. Craiovan B, Weber M, Worlicek M et al (2016) Measuring acetabular cup orientation on antero-posterior radiographs of the hip after total hip arthroplasty with a vector arithmetic radiological method. Is it valid and verified for daily clinical practice? (Messung der Huftpfannenposition auf anteroposterioren Beckenubersichtsaufnahmen nach Implantation einer Huftendtotalendoprothese mittels vektor-arithmetischer Methode. Wie genau ist dies im klinischen Alltag?) Rofo 188(6):574–581. https://doi.org/10.1055/s-0042-104205

    Article  CAS  PubMed  Google Scholar 

  5. Wan Z, Malik A, Jaramaz B et al (2009) Imaging and navigation measurement of acetabular component position in THA. Clin Orthop Relat Res 467(1):32–42. https://doi.org/10.1007/s11999-008-0597-5

    Article  PubMed  Google Scholar 

  6. Lembeck B, Mueller O, Reize P et al (2005) Pelvic tilt makes acetabular cup navigation inaccurate. Acta Orthop 76(4):517–523. https://doi.org/10.1080/17453670510041501

    Article  PubMed  Google Scholar 

  7. Malik A, Wan Z, Jaramaz B et al (2010) A validation model for measurement of acetabular component position. J Arthroplasty 25(5):812–819. https://doi.org/10.1016/j.arth.2009.04.021

    Article  PubMed  Google Scholar 

  8. Schwarz TJ, Weber M, Dornia C et al (2017) Correction of pelvic tilt and pelvic rotation in cup measurement after THA—an experimental study (Korrektur der Beckenverkippung und der Beckenverdrehung bei der Pfannenmessung nach Huft-TEP-Versorgungen - Eine experimentelle Studie). Rofo 189(9):864–873. https://doi.org/10.1055/s-0043-110012

    Article  PubMed  Google Scholar 

  9. Tannast M, Fritsch S, Zheng G et al (2015) Which radiographic hip parameters do not have to be corrected for pelvic rotation and tilt? Clin Orthop Relat Res 473(4):1255–1266. https://doi.org/10.1007/s11999-014-3936-8

    Article  PubMed  Google Scholar 

  10. Legaye J, Duval-Beaupere G, Hecquet J et al (1998) Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J 7(2):99–103

    Article  CAS  Google Scholar 

  11. Le Huec JC, Aunoble S, Philippe L et al (2011) Pelvic parameters: origin and significance. Eur Spine J 20 Suppl 5: 564–571. https://doi.org/10.1007/s00586-011-1940-1

  12. Tannast M, Murphy SB, Langlotz F et al (2006) Estimation of pelvic tilt on anteroposterior X-rays—a comparison of six parameters. Skeletal Radiol 35(3):149–155. https://doi.org/10.1007/s00256-005-0050-8

    Article  CAS  PubMed  Google Scholar 

  13. Renkawitz T, Weber M, Springorum HR et al (2015) Impingement-free range of movement, acetabular component cover and early clinical results comparing ‘femur-first’ navigation and ‘conventional’ minimally invasive total hip arthroplasty: a randomised controlled trial. Bone Joint J 97-B(7):890–898. https://doi.org/10.1302/0301-620x.97b7.34729

    Article  CAS  PubMed  Google Scholar 

  14. Babisch JW, Layher F, Amiot LP (2008) The rationale for tilt-adjusted acetabular cup navigation. J Bone Joint Surg Am 90(2):357–365. https://doi.org/10.2106/jbjs.f.00628

    Article  PubMed  Google Scholar 

  15. Lewinnek GE, Lewis JL, Tarr R et al (1978) Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg Am 60(2):217–220

    Article  CAS  Google Scholar 

  16. Marx A, Knoch M von, Pfortner J et al (2006) Misinterpretation of cup anteversion in total hip arthroplasty using planar radiography. Arch Orthop Trauma Surg 126(7):487–492. https://doi.org/10.1007/s00402-006-0163-0

    Article  PubMed  Google Scholar 

  17. Craiovan B, Renkawitz T, Weber M et al (2014) Is the acetabular cup orientation after total hip arthroplasty on a two dimension or three dimension model accurate? Int Orthop 38(10):2009–2015. https://doi.org/10.1007/s00264-014-2336-8

    Article  PubMed  Google Scholar 

  18. Blondel B, Schwab F, Patel A et al (2012) Sacro-femoral-pubic angle: a coronal parameter to estimate pelvic tilt. Eur Spine J 21(4):719–724. https://doi.org/10.1007/s00586-011-2061-6

    Article  PubMed  Google Scholar 

  19. Vialle R, Levassor N, Rillardon L et al (2005) Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Joint Surg Am 87(2):260–267. https://doi.org/10.2106/JBJS.D.02043

    Article  PubMed  Google Scholar 

  20. Pierrepont J, Hawdon G, Miles BP et al (2017) Variation in functional pelvic tilt in patients undergoing total hip arthroplasty. Bone Joint J 99-B(2): 184–191. https://doi.org/10.1302/0301-620X.99B2.BJJ-2016-0098.R1

    Article  CAS  PubMed  Google Scholar 

  21. Kanawade V, Dorr LD, Wan Z (2014) Predictability of acetabular component angular change with postural shift from standing to sitting position. J Bone Joint Surg Am 96(12):978–986. https://doi.org/10.2106/JBJS.M.00765

    Article  PubMed  Google Scholar 

  22. Henebry A, Gaskill T (2013) The effect of pelvic tilt on radiographic markers of acetabular coverage. Am J Sports Med 41(11):2599–2603. https://doi.org/10.1177/0363546513500632

    Article  PubMed  Google Scholar 

  23. Monazzam S, Agashe M, Hosalkar HS (2013) Reliability of overcoverage parameters with varying morphologic pincer features: comparison of EOS(R) and radiography. Clin Orthop Relat Res 471(8):2578–2585. https://doi.org/10.1007/s11999-013-3001-z

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schwarz T, Weber M, Worner M et al (2017) Central X-ray beam correction of radiographic acetabular cup measurement after THA: an experimental study. Int J Comput Assist Radiol Surg 12(5):829–837. https://doi.org/10.1007/s11548-016-1489-x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

There is no funding source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Schwarz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study is a retrospective analysis of data obtained in a registered, prospective, controlled trial (DRKS00000739, German Clinical Trials Register). This investigation was approved by the local Ethics Committee (No. 10-121-0263). All procedures were in accordance with the ethical standards of the responsible committee on human experimentation and with the Declaration of Helsinki of 1975, as revised in 2000. The study collective including 3D CT of all patients was anonymized using numbers.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwarz, T., Benditz, A., Springorum, HR. et al. Assessment of pelvic tilt in anteroposterior radiographs by means of tilt ratios. Arch Orthop Trauma Surg 138, 1045–1052 (2018). https://doi.org/10.1007/s00402-018-2931-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-018-2931-z

Keywords

Navigation