Skip to main content
Log in

3D Computer graphical anatomy study of the femur: a basis for a new nail design

  • Trauma Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Background

Current intramedullary nails with a radius of curvature (ROC) of 1500–2000 mm sometimes cause distal anterior cortical encroachment. Furthermore, clinical data indicate that the proximal nail end is too long for some Asian patients. The objective of our study was to develop a comprehensive 3D measurement protocol that measures both the anatomy of the canal and the proximal region. The protocol was used to obtain measurements from Caucasian and Asian (Japanese and Thai) specimens.

Materials and methods

A total of 90 3D bone models representative of hip fracture patients were reconstructed from CT data. RapidForm 2006 was used to generate the reference geometries required for determining radius and angulation of shaft antecurvature as well as measurements of the proximal anatomy. Multiple linear regression analyses were used to determine the relative contribution of height, age, ethnicity, gender, and body side on the total variance.

Results

The mean ROC in the natural 3D antecurvature plane was 885 mm overall, 974 mm in Caucasians and 787 mm in Asians. Height, age, ethnicity, gender, and body side significantly predicted ROC (R = 0.53, p = 0.000). The mean values of anteversion measurements for Asians (Japanese: 22.1°; Thai: 22.7°) were significantly larger than those of the Caucasians (14.5°; p = 0.001). There was virtually no difference (p = 0.186) between the measurements pertaining to the length of the proximal nail end between Caucasian and Asian samples. There was no significant difference between the mean neck-to-shaft angles (Caucasian: 126°; Japanese: 128.2°; Thai: 125.7°; p = 0.198 for Asians vs Caucasians).

Conclusions

The developed comprehensive anatomical 3D measurement protocol could serve as standardised approach for anthropometric studies in the future. Our data suggest that the ROC of current nail designs should be reduced from between 1500 and 2000 to 1000 mm to achieve an improved fit for the investigated population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Küntscher G (1940) [Die Marknagelung von Knochenbrüchen]. Langenbecks. Arch Klin Chir 200:443–455 (ArticleGerman)

    Google Scholar 

  2. Zickel RE (1967) A new fixation device for subtrochanteric fractures of the femur: a preliminary report. Clin Orthop Relat Res 54:115–123

    Article  CAS  PubMed  Google Scholar 

  3. Stapert JW, Geesing CL, Jacobs PB, de Wit RJ, Vierhout PA (1993) First experience and complications with the long Gamma nail. J Trauma 34(3):394–400

    Article  CAS  PubMed  Google Scholar 

  4. Harper MC, Carson WL (1987) Curvature of the femur and the proximal entry point for an intramedullary rod. Clin Orthop Relat Res 220:155–161

    Google Scholar 

  5. Zuber K, Schneider E, Eulenberger J, Perren SM (1988) Form and dimension of the bone marrow cavity of the human femur with reference to the fit of intramedullary implants. Unfallchirurg 91:314–319 (ArticleGerman)

    CAS  PubMed  Google Scholar 

  6. Ostrum RF, Levy MS (2005) Penetration of the distal femoral anterior cortex during intramedullary nailing for subtrochanteric fractures: a report of three cases. J Orthop Trauma 19(9):656–660. doi:10.1097/01.bot.0000154481.46693.69

    Article  PubMed  Google Scholar 

  7. Bazylewicz DB, Egol KA, Koval KJ (2013) Cortical encroachment after cephalomedullary nailing of the proximal femur: evaluation of a more anatomic radius of curvature. J Orthop Trauma 27(6):303–307. doi:10.1097/BOT.0b013e318283f24f

    Article  PubMed  Google Scholar 

  8. Collinge CA, Beltran CP (2013) Does modern nail geometry affect positioning in the distal femur of elderly patients with hip fractures? A comparison of otherwise identical intramedullary nails with a 200 versus 150 cm radius of curvature. J Orthop Trauma 27(6):299–302. doi:10.1097/BOT.0b013e318283f231

    Article  PubMed  Google Scholar 

  9. Pu JS, Liu L, Wang GL, Fang Y, Yang TF (2009) Results of the proximal femoral nail anti-rotation (PFNA) in elderly Chinese patients. Int Orthop 33(5):1441–1444. doi:10.1007/s00264-009-0776-3

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chantarapanich N, Sitthiseripratip K, Mahaisavariya B, Wongcumchang M, Siribodhi P (2008) 3D geometrical assessment of femoral curvature: a reverse engineering technique. J Med Assoc Thai 91(9):1377–1381

    PubMed  Google Scholar 

  11. Karakaş HM, Harma A (2008) Femoral shaft bowing with age: a digital radiological study of Anatolian Caucasian adults. Diagn Interv Radiol (Ank) 14(1):29–32

    Google Scholar 

  12. Maehara T, Tokashiki T, Kaneda D, Bun H, Sato R, Ikuma H (2013) Curvature of the femoral shaft in elderly Japanese female. Kossetsu 35: 780–783 (Article in Japanese)

    Google Scholar 

  13. Maratt J, Schilling PL, Holcombe S, Dougherty R, Murphy R, Wang SC et al (2014) Variation in the femoral bow: a novel high-throughput analysis of 3922 femurs on cross-sectional imaging. J Orthop Trauma 28:6–9. doi:10.1097/BOT.0b013e31829ff3c9

    Article  PubMed  Google Scholar 

  14. Leung KS, Procter P, Robioneck B, Behrens K (1996) Geometric mismatch of the Gamma nail to the Chinese femur. Clin Orthop Relat Res 323:42–48

    Article  Google Scholar 

  15. Mahaisavariya B, Sitthiseripratip K, Tongdee T, Bohez EL, Vander Sloten J, Oris P (2002) Morphological study of the proximal femur: a new method of geometrical assessment using 3-dimensional reverse engineering. Med Eng Phys 24(9):617–622. doi:10.1016/s1350-4533(02)00113-3

    Article  PubMed  Google Scholar 

  16. Dong NN, Rickels T, Bastian A, Wang A, Zhou Y, Zhang X, et al (2014) Comparison of proximal femoral 3D morphology between Chinese and Caucasian populations [poster 0886]. Presented at the 60th Annual Meeting of the Orthopaedic Research Society (ORS); New Orleans, LA, USA, 15–18, 2014. http://www.ors.org/Transactions/60/0886.pdf. Accessed 26 July 2016

  17. Maehara T, Shinohara K, Yamashita K, Bun H, Kaneda D, Ikuma H (2012) The morphology of the femur in elderly Japanese female: analysis using 3D-CT. Kossetsu 34: 451–455 (Article in Japanese)

    Google Scholar 

  18. American Academy of Orthopaedic Surgeons (2014) Management of Hip Fractures in the elderly. Evidence-based clinical practice guideline. http://www.aaos.org/research/guidelines/HipFxGuideline.pdf. Accessed 26 July 2016

  19. Rathnayaka K, Sahama T, Schuetz MA, Schmutz B (2011) Effects of CT image segmentation methods on the accuracy of long bone 3D reconstructions. Med Eng Phys 33(2):226–233. doi:10.1016/j.medengphy.2010.10.002

    Article  PubMed  Google Scholar 

  20. Hoaglund FT, Low WD (1980) Anatomy of the femoral neck and head, with comparative data from Caucasians and Hong Kong Chinese. Clin Orthop Relat Res 152:10–16

    Google Scholar 

  21. Reikerås O, Høiseth A, Reigstad A, Fönstelien E (1982) Femoral neck angles: a specimen study with special regard to bilateral differences. Acta Orthop Scand 53(5):775–779. doi:10.3109/17453678208992291

    Article  PubMed  Google Scholar 

  22. Bråten M, Terjesen T, Rossvoll I (1992) Femoral anteversion in normal adults. Ultrasound measurements in 50 men and 50 women. Acta Orthop Scand 63(1):29–32. doi:10.3109/17453679209154844

    Article  PubMed  Google Scholar 

  23. Toogood PA, Skalak A, Cooperman DR (2009) Proximal femoral anatomy in the normal human population. Clin Orthop Relat Res 467(4):876–885. doi:10.1007/s11999-008-0473-3

    Article  PubMed  Google Scholar 

  24. Koerner JD, Patel NM, Yoon RS, Sirkin MS, Reilly MC, Liporace FA (2013) Femoral version of the general population: does “normal” vary by gender or ethnicity? J Orthop Trauma 27(6):308–311. doi:10.1097/BOT.0b013e3182693fdd

    Article  PubMed  Google Scholar 

  25. Ehmke LW, Polzin BM, Madey SM, Bottlang M (2006) Femoral nailing through the trochanter: the reamer pathway indicates a helical nail shape. J Orthop Trauma 20(10):668–674. doi:10.1097/01.bot.0000247073.79430.87

    Article  PubMed  Google Scholar 

  26. Streubel PN, Wong AH, Ricci WM, Gardner MJ (2011) Is there a standard trochanteric entry site for nailing of subtrochanteric femur fractures? J Orthop Trauma 25(4):202–207. doi:10.1097/BOT.0b013e3181e93ce2

    Article  PubMed  Google Scholar 

  27. Stryker Trauma GmbH (2014) Hip Fractures—Gamma3® Long Nail R1.5 and R2.0 Operative Technique https://www.strykermeded.com/media/1310/gamma3-long-nail-r15-and-r20-operative-technique.pdf. Accessed 26 July 2016

  28. Synthes USA (2002) Titanium Trochanteric Fixation Nail System. For intramedullary fixation of proximal femur fractures. Technique Guide http://www.synthes.com/MediaBin/US%20DATA/Product%20Support%20Materials/Technique%20Guides/SUTGTITrocJ3900I.pdf. Accessed 26 July 2016

  29. Egol KA, Chang EY, Cvitkovic J, Kummer FJ, Koval KJ (2004) Mismatch of current intramedullary nails with the anterior bow of the femur. J Orthop Trauma 18(7):410–415

    Article  PubMed  Google Scholar 

  30. Buford WL Jr, Turnbow BJ, Gugala Z, Lindsey RW (2014) Three-dimensional computed tomography-based modeling of sagittal cadaveric femoral bowing and implications for intramedullary nailing. J Orthop Trauma 28(1):10–16. doi:10.1097/BOT.0000000000000019

    Article  PubMed  Google Scholar 

  31. Statistisches Bundesamt (2011) Mikrozensus—Fragen zur Gesundheit—Körpermasse der Bevölkerung—2009. https://www.destatis.de/DE/Publikationen/Thematisch/Gesundheit/Gesundheitszustand/Koerpermasse5239003099004.pdf?__blob=publicationFile. Accessed 26 July 2016

  32. Yong V, Saito Y (2012) How accurate are self-reported height, weight, and BMI among community-dwelling elderly Japanese?: Evidence from a national population-based study. Geriatr Gerontol Int 12(2):247–256. doi:10.1111/j.1447-0594.2011.00759.x

    Article  PubMed  Google Scholar 

  33. Jantz LM, Jantz RL (1999) Secular change in long bone length and proportion in the United States, 1800–1970. Am J Phys Anthropol 110(1):57–67

    Article  CAS  PubMed  Google Scholar 

  34. Noble PC, Box GG, Kamaric E, Fink MJ, Alexander JW, Tullos HS (1995) The effect of aging on the shape of the proximal femur. Clin Orthop Relat Res 316:31–44

    Google Scholar 

  35. Bong MR, Kummer FJ, Koval KJ, Egol KA (2007) Intramedullary nailing of the lower extremity: biomechanics and biology. J Am Acad Orthop Surg 15(2):97–106

    Article  PubMed  Google Scholar 

  36. Blauth M, Finkemeier C (2015) TFN-Advanced Proximal Femoral Nailing System (TFNA). AOTK System Innovations 1:4–10. https://issuu.com/aofoundation/docs/tk_news_2015_11_hires?e=5253115/31551614. Accessed 21 Sept 2016

Download references

Acknowledgements

The authors received editorial/writing support in the preparation of this manuscript provided by Niina Nuottamo of Excerpta Medica, funded by DePuy Synthes. The authors were responsible for all content and editorial decisions, and received no honoraria related to the development of this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beat Schmutz.

Ethics declarations

Conflict of interest

B. Schmutz has received an industrial scholarship from DePuy Synthes Australia. S.J. Kmiec is an employee of DePuy Synthes. M. Altmann is an employee of Synthes GmbH. The remaining authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmutz, B., Kmiec, S., Wullschleger, M.E. et al. 3D Computer graphical anatomy study of the femur: a basis for a new nail design. Arch Orthop Trauma Surg 137, 321–331 (2017). https://doi.org/10.1007/s00402-016-2621-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-016-2621-7

Keywords

Navigation