Askew K, Li K, Olmos-Alonso A, Garcia-Moreno F, Liang Y, Richardson P et al (2017) Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain. Cell Rep 18:391–405. https://doi.org/10.1016/j.celrep.2016.12.041
CAS
Article
PubMed
PubMed Central
Google Scholar
Bennett ML, Bennett FC, Liddelow SA, Ajami B, Zamanian JL, Fernhoff NB et al (2016) New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci U S A 113:E1738-1746. https://doi.org/10.1073/pnas.1525528113
CAS
Article
PubMed
PubMed Central
Google Scholar
Bruck W, Porada P, Poser S, Rieckmann P, Hanefeld F, Kretzschmar HA et al (1995) Monocyte/macrophage differentiation in early multiple sclerosis lesions. Ann Neurol 38:788–796. https://doi.org/10.1002/ana.410380514
CAS
Article
PubMed
Google Scholar
Bruttger J, Karram K, Wortge S, Regen T, Marini F, Hoppmann N et al (2015) Genetic cell ablation reveals clusters of local self-renewing microglia in the mammalian central nervous system. Immunity 43:92–106. https://doi.org/10.1016/j.immuni.2015.06.012
CAS
Article
PubMed
Google Scholar
Buenrostro JD, Wu B, Chang HY, Greenleaf WJ (2015) ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol. https://doi.org/10.1002/0471142727.mb2129s109
Article
PubMed
PubMed Central
Google Scholar
Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G et al (2014) Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci 17:131–143. https://doi.org/10.1038/nn.3599
CAS
Article
PubMed
Google Scholar
Cardona AE, Huang D, Sasse ME, Ransohoff RM (2006) Isolation of murine microglial cells for RNA analysis or flow cytometry. Nat Protoc 1:1947–1951. https://doi.org/10.1038/nprot.2006.327
CAS
Article
PubMed
Google Scholar
Chen WT, Lu A, Craessaerts K, Pavie B, Sala Frigerio C, Corthout N et al (2020) Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell 182(976–991):e919. https://doi.org/10.1016/j.cell.2020.06.038
CAS
Article
Google Scholar
Datta M, Staszewski O, Raschi E, Frosch M, Hagemeyer N, Tay TL et al (2018) Histone deacetylases 1 and 2 regulate microglia function during development, homeostasis, and neurodegeneration in a context-dependent manner. Immunity 48(514–529):e516. https://doi.org/10.1016/j.immuni.2018.02.016
CAS
Article
Google Scholar
Epelman S, Lavine KJ, Randolph GJ (2014) Origin and functions of tissue macrophages. Immunity 41:21–35. https://doi.org/10.1016/j.immuni.2014.06.013
CAS
Article
PubMed
PubMed Central
Google Scholar
Erny D, Hrabe de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E et al (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18:965–977. https://doi.org/10.1038/nn.4030
CAS
Article
PubMed
PubMed Central
Google Scholar
Friedrich M, Sankowski R, Bunse L, Kilian M, Green E, Ramallo Guevara C et al (2021) Tryptophan metabolism drives dynamic immunosuppressive myeloid states in IDH-mutant gliomas. Nature Cancer. https://doi.org/10.1038/s43018-021-00201-z
Article
Google Scholar
Fuger P, Hefendehl JK, Veeraraghavalu K, Wendeln AC, Schlosser C, Obermuller U et al (2017) Microglia turnover with aging and in an Alzheimer’s model via long-term in vivo single-cell imaging. Nat Neurosci 20:1371–1376. https://doi.org/10.1038/nn.4631
CAS
Article
PubMed
Google Scholar
Garcia-Cabezas MA, John YJ, Barbas H, Zikopoulos B (2016) Distinction of neurons, glia and endothelial cells in the cerebral cortex: an algorithm based on cytological features. Front Neuroanat 10:107. https://doi.org/10.3389/fnana.2016.00107
CAS
Article
PubMed
PubMed Central
Google Scholar
Garman RH (2011) Histology of the central nervous system. Toxicol Pathol 39:22–35. https://doi.org/10.1177/0192623310389621
Article
PubMed
Google Scholar
Geirsdottir L, David E, Keren-Shaul H, Weiner A, Bohlen SC, Neuber J et al (2019) Cross-species single-cell analysis reveals divergence of the primate microglia program. Cell 179(1609–1622):e1616. https://doi.org/10.1016/j.cell.2019.11.010
CAS
Article
Google Scholar
Golomb SM, Guldner IH, Zhao A, Wang Q, Palakurthi B, Aleksandrovic EA et al (2020) Multi-modal single-cell analysis reveals brain immune landscape plasticity during aging and gut microbiota dysbiosis. Cell Rep 33:108438. https://doi.org/10.1016/j.celrep.2020.108438
CAS
Article
PubMed
PubMed Central
Google Scholar
Gomez-Nicola D, Fransen NL, Suzzi S, Perry VH (2013) Regulation of microglial proliferation during chronic neurodegeneration. J Neurosci 33:2481–2493. https://doi.org/10.1523/JNEUROSCI.4440-12.2013
CAS
Article
PubMed
PubMed Central
Google Scholar
Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ, Spann NJ et al (2014) Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159:1327–1340. https://doi.org/10.1016/j.cell.2014.11.023
CAS
Article
PubMed
PubMed Central
Google Scholar
Gosselin D, Skola D, Coufal NG, Holtman IR, Schlachetzki JCM, Sajti E et al (2017) An environment-dependent transcriptional network specifies human microglia identity. Science. https://doi.org/10.1126/science.aal3222
Article
PubMed
PubMed Central
Google Scholar
Grajchen E, Hendriks JJA, Bogie JFJ (2018) The physiology of foamy phagocytes in multiple sclerosis. Acta Neuropathol Commun 6:124. https://doi.org/10.1186/s40478-018-0628-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Hambardzumyan D, Gutmann DH, Kettenmann H (2016) The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci 19:20–27. https://doi.org/10.1038/nn.4185
CAS
Article
PubMed
PubMed Central
Google Scholar
Hametner S, Wimmer I, Haider L, Pfeifenbring S, Bruck W, Lassmann H (2013) Iron and neurodegeneration in the multiple sclerosis brain. Ann Neurol 74:848–861. https://doi.org/10.1002/ana.23974
CAS
Article
PubMed
PubMed Central
Google Scholar
Horti AG, Naik R, Foss CA, Minn I, Misheneva V, Du Y et al (2019) PET imaging of microglia by targeting macrophage colony-stimulating factor 1 receptor (CSF1R). Proc Natl Acad Sci U S A 116:1686–1691. https://doi.org/10.1073/pnas.1812155116
CAS
Article
PubMed
PubMed Central
Google Scholar
Jackson HW, Fischer JR, Zanotelli VRT, Ali HR, Mechera R, Soysal SD et al (2020) The single-cell pathology landscape of breast cancer. Nature 578:615–620. https://doi.org/10.1038/s41586-019-1876-x
CAS
Article
PubMed
Google Scholar
Jordao MJC, Sankowski R, Brendecke SM, Sagar LG, Tai YH, Tay TL et al (2019) Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science. https://doi.org/10.1126/science.aat7554
Article
PubMed
Google Scholar
Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK et al (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169(1276–1290):e1217. https://doi.org/10.1016/j.cell.2017.05.018
CAS
Article
Google Scholar
Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG et al (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16:273–280. https://doi.org/10.1038/nn.3318
CAS
Article
PubMed
Google Scholar
Kim JS, Kolesnikov M, Peled-Hajaj S, Scheyltjens I, Xia Y, Trzebanski S et al (2020) A Binary Cre transgenic approach dissects microglia and CNS border-associated macrophages. Immunity. https://doi.org/10.1016/j.immuni.2020.11.007
Article
PubMed
PubMed Central
Google Scholar
Koole M, Schmidt ME, Hijzen A, Ravenstijn P, Vandermeulen C, Van Weehaeghe D et al (2019) (18)F-JNJ-64413739, a novel PET ligand for the P2X7 ion channel: radiation dosimetry, kinetic modeling, test-retest variability, and occupancy of the P2X7 antagonist JNJ-54175446. J Nucl Med 60:683–690. https://doi.org/10.2967/jnumed.118.216747
CAS
Article
PubMed
Google Scholar
Lassmann H, Schmied M, Vass K, Hickey WF (1993) Bone marrow derived elements and resident microglia in brain inflammation. Glia 7:19–24. https://doi.org/10.1002/glia.440070106
CAS
Article
PubMed
Google Scholar
Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M et al (2014) Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159:1312–1326. https://doi.org/10.1016/j.cell.2014.11.018
CAS
Article
PubMed
PubMed Central
Google Scholar
Luo Y, Duan H, Qian Y, Feng L, Wu Z, Wang F et al (2017) Macrophagic CD146 promotes foam cell formation and retention during atherosclerosis. Cell Res 27:352–372. https://doi.org/10.1038/cr.2017.8
CAS
Article
PubMed
PubMed Central
Google Scholar
Magnus T, Chan A, Grauer O, Toyka KV, Gold R (2001) Microglial phagocytosis of apoptotic inflammatory T cells leads to down-regulation of microglial immune activation. J Immunol 167:5004–5010. https://doi.org/10.4049/jimmunol.167.9.5004
CAS
Article
PubMed
Google Scholar
Mass E, Jacome-Galarza CE, Blank T, Lazarov T, Durham BH, Ozkaya N et al (2017) A somatic mutation in erythro-myeloid progenitors causes neurodegenerative disease. Nature 549:389–393. https://doi.org/10.1038/nature23672
CAS
Article
PubMed
PubMed Central
Google Scholar
Masuda T, Sankowski R, Staszewski O, Bottcher C, Amann L, Sagar SC et al (2019) Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566:388–392. https://doi.org/10.1038/s41586-019-0924-x
CAS
Article
PubMed
Google Scholar
Matcovitch-Natan O, Winter DR, Giladi A, Vargas Aguilar S, Spinrad A, Sarrazin S et al (2016) Microglia development follows a stepwise program to regulate brain homeostasis. Science 353:aad8670. https://doi.org/10.1126/science.aad8670
CAS
Article
PubMed
Google Scholar
Matschke J, Lutgehetmann M, Hagel C, Sperhake JP, Schroder AS, Edler C et al (2020) Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol 19:919–929. https://doi.org/10.1016/S1474-4422(20)30308-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Maynard KR, Collado-Torres L, Weber LM, Uytingco C, Barry BK, Williams SR et al (2021) Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nat Neurosci 24:425–436. https://doi.org/10.1038/s41593-020-00787-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Mendiola AS, Ryu JK, Bardehle S, Meyer-Franke A, Ang KK, Wilson C et al (2020) Transcriptional profiling and therapeutic targeting of oxidative stress in neuroinflammation. Nat Immunol 21:513–524. https://doi.org/10.1038/s41590-020-0654-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Mezo C, Dokalis N, Mossad O, Staszewski O, Neuber J, Yilmaz B et al (2020) Different effects of constitutive and induced microbiota modulation on microglia in a mouse model of Alzheimer’s disease. Acta Neuropathol Commun 8:119. https://doi.org/10.1186/s40478-020-00988-5
CAS
Article
PubMed
PubMed Central
Google Scholar
Mori S, Leblond CP (1969) Identification of microglia in light and electron microscopy. J Comp Neurol 135:57–80. https://doi.org/10.1002/cne.901350104
CAS
Article
PubMed
Google Scholar
Mrdjen D, Pavlovic A, Hartmann FJ, Schreiner B, Utz SG, Leung BP et al (2018) High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48(380–395):e386. https://doi.org/10.1016/j.immuni.2018.01.011
CAS
Article
Google Scholar
Ni R, Mu L, Ametamey S (2019) Positron emission tomography of type 2 cannabinoid receptors for detecting inflammation in the central nervous system. Acta Pharmacol Sin 40:351–357. https://doi.org/10.1038/s41401-018-0035-5
CAS
Article
PubMed
Google Scholar
Nott A, Holtman IR, Coufal NG, Schlachetzki JCM, Yu M, Hu R et al (2019) Brain cell type-specific enhancer-promoter interactome maps and disease-risk association. Science 366:1134–1139. https://doi.org/10.1126/science.aay0793
CAS
Article
PubMed
PubMed Central
Google Scholar
Nugent AA, Lin K, van Lengerich B, Lianoglou S, Przybyla L, Davis SS et al (2020) TREM2 regulates microglial cholesterol metabolism upon chronic phagocytic challenge. Neuron 105(837–854):e839. https://doi.org/10.1016/j.neuron.2019.12.007
CAS
Article
Google Scholar
Nutma E, Gebro E, Marzin MC, van der Valk P, Matthews PM, Owen DR et al (2021) Activated microglia do not increase 18 kDa translocator protein (TSPO) expression in the multiple sclerosis brain. Glia 69:2447–2458. https://doi.org/10.1002/glia.24052
CAS
Article
PubMed
PubMed Central
Google Scholar
Olah M, Menon V, Habib N, Taga MF, Ma Y, Yung CJ et al (2020) Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease. Nat Commun 11:6129. https://doi.org/10.1038/s41467-020-19737-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P et al (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–1458. https://doi.org/10.1126/science.1202529
CAS
Article
PubMed
Google Scholar
Perez-Cerda F, Sanchez-Gomez MV, Matute C (2015) Pio del Rio Hortega and the discovery of the oligodendrocytes. Front Neuroanat 9:92. https://doi.org/10.3389/fnana.2015.00092
CAS
Article
PubMed
PubMed Central
Google Scholar
Pombo Antunes AR, Scheyltjens I, Lodi F, Messiaen J, Antoranz A, Duerinck J et al (2021) Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. Nat Neurosci 24:595–610. https://doi.org/10.1038/s41593-020-00789-y
CAS
Article
PubMed
Google Scholar
Priller J, Prinz M (2019) Targeting microglia in brain disorders. Science 365:32–33. https://doi.org/10.1126/science.aau9100
CAS
Article
PubMed
Google Scholar
Prinz M, Jung S, Priller J (2019) Microglia biology: one century of evolving concepts. Cell 179:292–311. https://doi.org/10.1016/j.cell.2019.08.053
CAS
Article
PubMed
Google Scholar
Prinz M, Masuda T, Wheeler MA, Quintana FJ (2021) Microglia and central nervous system-associated macrophages-from origin to disease modulation. Annu Rev Immunol 39:251–277. https://doi.org/10.1146/annurev-immunol-093019-110159
CAS
Article
PubMed
PubMed Central
Google Scholar
Prinz M, Priller J (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15:300–312. https://doi.org/10.1038/nrn3722
CAS
Article
PubMed
Google Scholar
Rademakers R, Baker M, Nicholson AM, Rutherford NJ, Finch N, Soto-Ortolaza A et al (2011) Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat Genet 44:200–205. https://doi.org/10.1038/ng.1027
CAS
Article
PubMed
PubMed Central
Google Scholar
Riikonen J, Jaatinen P, Rintala J, Porsti I, Karjala K, Hervonen A (2002) Intermittent ethanol exposure increases the number of cerebellar microglia. Alcohol Alcohol 37:421–426. https://doi.org/10.1093/alcalc/37.5.421
CAS
Article
PubMed
Google Scholar
Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E, Vanderburg CR et al (2019) Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363:1463–1467. https://doi.org/10.1126/science.aaw1219
CAS
Article
PubMed
PubMed Central
Google Scholar
Savage JC, Picard K, Gonzalez-Ibanez F, Tremblay ME (2018) A Brief history of microglial ultrastructure: distinctive features, phenotypes, and functions discovered over the past 60 years by electron microscopy. Front Immunol 9:803. https://doi.org/10.3389/fimmu.2018.00803
CAS
Article
PubMed
PubMed Central
Google Scholar
Schultz RL, Maynard EA, Pease DC (1957) Electron microscopy of neurons and neuroglia of cerebral cortex and corpus callosum. Am J Anat 100:369–407. https://doi.org/10.1002/aja.1001000305
CAS
Article
PubMed
Google Scholar
Schwabenland M, Mossad O, Peres AG, Kessler F, Maron FJM, Harsan LA et al (2019) Loss of USP18 in microglia induces white matter pathology. Acta Neuropathol Commun 7:106. https://doi.org/10.1186/s40478-019-0757-8
Article
PubMed
PubMed Central
Google Scholar
Schwabenland M, Salie H, Tanevski J, Killmer S, Lago MS, Schlaak AE et al (2021) Deep spatial profiling of human COVID-19 brains reveals neuroinflammation with distinct microanatomical microglia-T-cell interactions. Immunity 54(1594–1610):e1511. https://doi.org/10.1016/j.immuni.2021.06.002
CAS
Article
Google Scholar
Sharma K, Schmitt S, Bergner CG, Tyanova S, Kannaiyan N, Manrique-Hoyos N et al (2015) Cell type- and brain region-resolved mouse brain proteome. Nat Neurosci 18:1819–1831. https://doi.org/10.1038/nn.4160
CAS
Article
PubMed
PubMed Central
Google Scholar
Sierra A, de Castro F, Del Rio-Hortega J, Rafael Iglesias-Rozas J, Garrosa M, Kettenmann H (2016) The “Big-Bang” for modern glial biology: translation and comments on Pio del Rio-Hortega 1919 series of papers on microglia. Glia 64:1801–1840. https://doi.org/10.1002/glia.23046
Article
PubMed
Google Scholar
Singh S, Metz I, Amor S, van der Valk P, Stadelmann C, Bruck W (2013) Microglial nodules in early multiple sclerosis white matter are associated with degenerating axons. Acta Neuropathol 125:595–608. https://doi.org/10.1007/s00401-013-1082-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Stankoff B, Poirion E, Tonietto M, Bodini B (2018) Exploring the heterogeneity of MS lesions using positron emission tomography: a reappraisal of their contribution to disability. Brain Pathol 28:723–734. https://doi.org/10.1111/bpa.12641
Article
PubMed
PubMed Central
Google Scholar
Streit WJ (1990) An improved staining method for rat microglial cells using the lectin from Griffonia simplicifolia (GSA I-B4). J Histochem Cytochem 38:1683–1686. https://doi.org/10.1177/38.11.2212623
CAS
Article
PubMed
Google Scholar
Streit WJ, Xue QS, Tischer J, Bechmann I (2014) Microglial pathology. Acta Neuropathol Commun 2:142. https://doi.org/10.1186/s40478-014-0142-6
Article
PubMed
PubMed Central
Google Scholar
Sucksdorff M, Matilainen M, Tuisku J, Polvinen E, Vuorimaa A, Rokka J et al (2020) Brain TSPO-PET predicts later disease progression independent of relapses in multiple sclerosis. Brain 143:3318–3330. https://doi.org/10.1093/brain/awaa275
Article
PubMed
PubMed Central
Google Scholar
Tada M, Konno T, Tada M, Tezuka T, Miura T, Mezaki N et al (2016) Characteristic microglial features in patients with hereditary diffuse leukoencephalopathy with spheroids. Ann Neurol 80:554–565. https://doi.org/10.1002/ana.24754
CAS
Article
PubMed
Google Scholar
Tay TL, Mai D, Dautzenberg J, Fernandez-Klett F, Lin G, Sagar DM et al (2017) A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nat Neurosci 20:793–803. https://doi.org/10.1038/nn.4547
CAS
Article
PubMed
Google Scholar
Ulland TK, Song WM, Huang SC, Ulrich JD, Sergushichev A, Beatty WL et al (2017) TREM2 maintains microglial metabolic fitness in Alzheimer’s disease. Cell 170(649–663):e613. https://doi.org/10.1016/j.cell.2017.07.023
CAS
Article
Google Scholar
Van Hove H, Martens L, Scheyltjens I, De Vlaminck K, Pombo Antunes AR, De Prijck S et al (2019) A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat Neurosci 22:1021–1035. https://doi.org/10.1038/s41593-019-0393-4
CAS
Article
PubMed
Google Scholar
Vivash L, O’Brien TJ (2016) Imaging microglial activation with TSPO PET: lighting up neurologic diseases? J Nucl Med 57:165–168. https://doi.org/10.2967/jnumed.114.141713
CAS
Article
PubMed
Google Scholar
Wendeln AC, Degenhardt K, Kaurani L, Gertig M, Ulas T, Jain G et al (2018) Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556:332–338. https://doi.org/10.1038/s41586-018-0023-4
CAS
Article
PubMed
PubMed Central
Google Scholar
Wimmer I, Zrzavy T, Lassmann H (2018) Neuroinflammatory responses in experimental and human stroke lesions. J Neuroimmunol 323:10–18. https://doi.org/10.1016/j.jneuroim.2018.07.003
CAS
Article
PubMed
Google Scholar
Yun SP, Kam TI, Panicker N, Kim S, Oh Y, Park JS et al (2018) Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat Med 24:931–938. https://doi.org/10.1038/s41591-018-0051-5
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G, Pagani F et al (2014) Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci 17:400–406. https://doi.org/10.1038/nn.3641
CAS
Article
PubMed
Google Scholar
Zrzavy T, Hametner S, Wimmer I, Butovsky O, Weiner HL, Lassmann H (2017) Loss of “homeostatic” microglia and patterns of their activation in active multiple sclerosis. Brain 140:1900–1913. https://doi.org/10.1093/brain/awx113
Article
PubMed
PubMed Central
Google Scholar