Acta Neuropathologica

, Volume 136, Issue 4, pp 641–655 | Cite as

Pediatric low-grade gliomas can be molecularly stratified for risk

  • Rui Ryan Yang
  • Abudumijiti Aibaidula
  • Wei-wei Wang
  • Aden Ka-Yin Chan
  • Zhi-feng Shi
  • Zhen-yu Zhang
  • Danny Tat Ming Chan
  • Wai Sang Poon
  • Xian-zhi Liu
  • Wen-cai Li
  • Rui-qi Zhang
  • Yan-Xi Li
  • Nellie Yuk-Fei Chung
  • Hong Chen
  • Jingsong Wu
  • Liangfu Zhou
  • Kay Ka-Wai Li
  • Ho-Keung Ng
Original Paper


Pediatric low-grade gliomas (PLGGs) consist of a number of entities with overlapping histological features. PLGGs have much better prognosis than the adult counterparts, but a significant proportion of PLGGs suffers from tumor progression and recurrence. It has been shown that pediatric and adult low-grade gliomas are molecularly distinct. Yet the clinical significance of some of newer biomarkers discovered by genomic studies has not been fully investigated. In this study, we evaluated in a large cohort of 289 PLGGs a list of biomarkers and examined their clinical relevance. TERT promoter (TERTp), H3F3A and BRAF V600E mutations were detected by direct sequencing. ATRX nuclear loss was examined by immunohistochemistry. CDKN2A deletion, KIAA1549-BRAF fusion, and MYB amplification were determined by fluorescence in situ hybridization (FISH). TERTp, H3F3A, and BRAF V600E mutations were identified in 2.5, 6.4, and 7.4% of PLGGs, respectively. ATRX loss was found in 4.9% of PLGGs. CDKN2A deletion, KIAA1549-BRAF fusion and MYB amplification were detected in 8.8, 32.0 and 10.6% of PLGGs, respectively. Survival analysis revealed that TERTp mutation, H3F3A mutation, and ATRX loss were significantly associated with poor PFS (p < 0.0001, p < 0.0001, and p = 0.0002) and OS (p < 0.0001, p < 0.0001, and p < 0.0001). BRAF V600E was associated with shorter PFS (p = 0.011) and OS (p = 0.032) in a subset of PLGGs. KIAA1549-BRAF fusion was a good prognostic marker for longer PFS (p = 0.0017) and OS (p = 0.0029). MYB amplification was also a favorable marker for a longer PFS (p = 0.040). Importantly, we showed that these molecular biomarkers can be used to stratify PLGGs into low- (KIAA1549-BRAF fusion or MYB amplification), intermediate-I (BRAF V600E and/or CDKN2A deletion), intermediate-II (no biomarker), and high-risk (TERTp or H3F3A mutation or ATRX loss) groups with distinct PFS (p < 0.0001) and OS (p < 0.0001). This scheme should aid in clinical decision-making.


Pediatric low-grade gliomas H3F3A ATRX BRAF CDKN2A Molecular risk stratification 



This study was supported by the Health and Medical Research Fund, Hong Kong (reference number 02133146); S. K. Yee Medical Foundation, Hong Kong (reference number 2151229); Children Cancer Foundation, Hong Kong; Shenzhen Science Technology and Innovation Commission (reference number JCYJ20170307165432612); and, Shanghai Municipal Commission of Health and Family Planning, China (reference number 201540145). We are grateful to Dr. Cynthia Hawkins, SickKids, Toronto, Canada, for allowing us to make use her NanoString panel.

Supplementary material

401_2018_1874_MOESM1_ESM.xlsx (16 kb)
Supplementary material 1 (XLSX 16 kb)
401_2018_1874_MOESM2_ESM.xlsx (10 kb)
Supplementary material 2 (XLSX 10 kb)
401_2018_1874_MOESM3_ESM.pdf (137 kb)
Supplementary material 3 (PDF 137 kb)
401_2018_1874_MOESM4_ESM.pdf (67 kb)
Supplementary material 4 (PDF 66 kb)
401_2018_1874_MOESM5_ESM.xlsx (11 kb)
Supplementary material 5 (XLSX 11 kb)
401_2018_1874_MOESM6_ESM.pdf (142 kb)
Supplementary material 6 (PDF 142 kb)
401_2018_1874_MOESM7_ESM.pdf (259 kb)
Supplementary material 7 (PDF 258 kb)
401_2018_1874_MOESM8_ESM.pdf (139 kb)
Supplementary material 8 (PDF 138 kb)
401_2018_1874_MOESM9_ESM.pdf (184 kb)
Supplementary material 9 (PDF 184 kb)
401_2018_1874_MOESM10_ESM.pdf (38 kb)
Supplementary material 10 (PDF 38 kb)
401_2018_1874_MOESM11_ESM.xlsx (11 kb)
Supplementary material 11 (XLSX 10 kb)
401_2018_1874_MOESM12_ESM.pdf (27 kb)
Supplementary material 12 (PDF 26 kb)
401_2018_1874_MOESM13_ESM.xlsx (10 kb)
Supplementary material 13 (XLSX 10 kb)
401_2018_1874_MOESM14_ESM.pdf (83 kb)
Supplementary material 14 (PDF 83 kb)
401_2018_1874_MOESM15_ESM.xlsx (12 kb)
Supplementary material 15 (XLSX 12 kb)
401_2018_1874_MOESM16_ESM.xlsx (13 kb)
Supplementary material 16 (XLSX 13 kb)
401_2018_1874_MOESM17_ESM.pdf (12 kb)
Supplementary material 17 (PDF 11 kb)


  1. 1.
    Aibaidula A, Chan AK-Y, Shi Z, Li Y, Zhang R, Yang R et al (2017) Adult IDH wild-type lower-grade gliomas should be further stratified. Neuro Oncol 19:1327–1337CrossRefPubMedGoogle Scholar
  2. 2.
    Ater JL, Zhou T, Holmes E, Mazewski CM, Booth TN, Freyer DR et al (2012) Randomized study of two chemotherapy regimens for treatment of low-grade glioma in young children: a report from the Children’s Oncology Group. J Clin Oncol 30(21):2641–2647CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bandopadhayay P, Bergthold G, London WB, Goumnerova LC, Morales La Madrid A, Marcus KJ et al (2014) Long-term outcome of 4,040 children diagnosed with pediatric low-grade gliomas: an analysis of the surveillance epidemiology and end results (SEER) database. Pediatr Blood Cancer 61(7):1173–1179CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bandopadhayay P, Ramkissoon LA, Jain P, Bergthold G, Wala J, Zeid R et al (2016) MYB-QKI rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism. Nat Genet 48(3):273–282CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bar EE, Lin A, Tihan T, Burger PC, Eberhart CG (2008) Frequent gains at chromosome 7q34 involving BRAF in pilocytic astrocytoma. J Neuropathol Exp Neurol 67(9):878–887CrossRefPubMedGoogle Scholar
  6. 6.
    Bax DA, Mackay A, Little SE, Carvalho D, Viana-Pereira M, Tamber N et al (2010) A distinct spectrum of copy number aberrations in pediatric high-grade gliomas. Clin Cancer Res 16(13):3368–3377CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Broniscer A, Baker SJ, West AN, Fraser MM, Proko E, Kocak M et al (2007) Clinical and molecular characteristics of malignant transformation of low-grade glioma in children. J Clin Oncol 25(6):682–689CrossRefPubMedGoogle Scholar
  8. 8.
    Castel D, Philippe C, Calmon R, Dret LL, Truffaux N, Boddaert N et al (2015) Histone H3F3A and HIST1H3B K27 M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol 130(6):815–827CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cruz GR, Dias Oliveira I, Moraes L, Del Giudice Paniago M, de Seixas Alves MT, Capellano AM et al (2014) Analysis of KIAA1549–BRAF fusion gene expression and IDH1/IDH2 mutations in low grade pediatric astrocytomas. J Neurooncol 117(2):235–242CrossRefPubMedGoogle Scholar
  10. 10.
    Dahiya S, Haydon DH, Alvarado D, Gurnett CA, Gutmann DH, Leonard JR (2013) BRAFV600E mutation is a negative prognosticator in pediatric ganglioglioma. Acta Neuropathol 125(6):901–910CrossRefPubMedGoogle Scholar
  11. 11.
    Diaz AK, Baker SJ (2014) The genetic signatures of pediatric high-grade glioma: no longer a one-act play. Semin Radiat Oncol 24(4):240–247CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Dimitriadis E, Alexiou GA, Tsotsou P, Simeonidi E, Stefanaki K, Patereli A et al (2013) BRAF alterations in pediatric low grade gliomas and mixed neuronal–glial tumors. J Neurooncol 113(3):353–358CrossRefPubMedGoogle Scholar
  13. 13.
    Dougherty MJ, Santi M, Brose MS, Ma C, Resnick AC, Sievert AJ et al (2010) Activating mutations in BRAF characterize a spectrum of pediatric low-grade gliomas. Neuro Oncol 12(7):621–630CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Eisenhardt AE, Olbrich H, Roring M, Janzarik W, Anh TN, Cin H et al (2011) Functional characterization of a BRAF insertion mutant associated with pilocytic astrocytoma. Int J Cancer 129(9):2297–2303CrossRefPubMedGoogle Scholar
  15. 15.
    Gessi M, Moneim YA, Hammes J, Waha A, Pietsch T (2014) FGFR1 N546 K mutation in a case of papillary glioneuronal tumor (PGNT). Acta Neuropathol 127(6):935–936CrossRefPubMedGoogle Scholar
  16. 16.
    Hawkins C, Walker E, Mohamed N, Zhang C, Jacob K, Shirinian M et al (2011) BRAF-KIAA1549 fusion predicts better clinical outcome in pediatric low-grade astrocytoma. Clin Cancer Res 17(14):4790–4798CrossRefPubMedGoogle Scholar
  17. 17.
    Heaphy CM, de Wilde RF, Jiao Y, Klein AP, Edil BH, Shi C et al (2011) Altered telomeres in tumors with ATRX and DAXX mutations. Science 333(6041):425CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Horbinski C (2013) To BRAF or not to BRAF: is that even a question anymore? J Neuropathol Exp Neurol 72(1):2–7CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Horbinski C, Hamilton RL, Nikiforov Y, Pollack IF (2010) Association of molecular alterations, including BRAF, with biology and outcome in pilocytic astrocytomas. Acta Neuropathol 119(5):641–649CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Horbinski C, Nikiforova MN, Hagenkord JM, Hamilton RL, Pollack IF (2012) Interplay among BRAF, p16, p53, and MIB1 in pediatric low-grade gliomas. Neuro Oncol 14(6):777–789CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Johnson A, Severson E, Gay L, Vergilio JA, Elvin J, Suh J et al (2017) Comprehensive genomic profiling of 282 pediatric low- and high-grade gliomas reveals genomic drivers, tumor mutational burden, and hypermutation signatures. Oncologist 22(12):1478–1490CrossRefPubMedGoogle Scholar
  22. 22.
    Jones DT, Hutter B, Jager N, Korshunov A, Kool M, Warnatz HJ et al (2013) Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet 45(8):927–932CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Jones DT, Kocialkowski S, Liu L, Pearson DM, Backlund LM, Ichimura K et al (2008) Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68(21):8673–8677CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Jones DT, Mulholland SA, Pearson DM, Malley DS, Openshaw SW, Lambert SR et al (2011) Adult grade II diffuse astrocytomas are genetically distinct from and more aggressive than their paediatric counterparts. Acta Neuropathol 121(6):753–761CrossRefPubMedGoogle Scholar
  25. 25.
    Jones DT, Witt O, Pfister SM (2018) BRAF V600E status alone is not sufficient as a prognostic biomarker in pediatric low-grade glioma. J Clin Oncol 36(1):96CrossRefPubMedGoogle Scholar
  26. 26.
    Kilday JP, Katharina U, Bouffet B (2014) Targeted therapy in pediatric low-grade glioma. Curr Neurol Neurosci Rep 14(4):441CrossRefPubMedGoogle Scholar
  27. 27.
    Koelsche C, Sahm F, Capper D, Reuss D, Sturm D, Jones DT et al (2013) Distribution of TERT promoter mutations in pediatric and adult tumors of the nervous system. Acta Neuropathol 126(6):907–915CrossRefPubMedGoogle Scholar
  28. 28.
    Lassaletta A, Zapotocky M, Bouffet E, Hawkins C, Tabori U (2016) An integrative molecular and genomic analysis of pediatric hemispheric low-grade gliomas: an update. Childs Nerv Syst 32(10):1789–1797CrossRefPubMedGoogle Scholar
  29. 29.
    Lassaletta A, Zapotocky M, Mistry M, Ramaswamy V, Honnorat M, Krishnatry R et al (2017) Therapeutic and prognostic implications of BRAF V600E in pediatric low-grade gliomas. J Clin Oncol 35(25):2934–2941CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Li YX, Shi Z, Aibaidula A, Chen H, Tang Q, Li KK et al (2016) Not all 1p/19q non-codeleted oligodendroglial tumors are astrocytic. Oncotarget 7(40):64615–64630PubMedPubMedCentralGoogle Scholar
  31. 31.
    Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820CrossRefPubMedGoogle Scholar
  32. 32.
    Mackay A, Burford A, Carvalho D, Izquierdo E, Fazal-Salom J, Taylor KR et al (2017) Integrated molecular meta-analysis of 1000 pediatric high-grade and diffuse intrinsic Pontine Glioma. Cancer Cell 32(4):520–537CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mistry M, Zhukova N, Merico D, Rakopoulos P, Krishnatry R, Shago M et al (2015) BRAF mutation and CDKN2A deletion define a clinically distinct subgroup of childhood secondary high-grade glioma. J Clin Oncol 33(9):1015–1022CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C et al (2015) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro Oncol 17(Suppl 4):iv1–iv62CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Packer RJ, Pfister S, Bouffet E, Avery R, Bandopadhayay P, Bornhorst M et al (2017) Pediatric low-grade gliomas: implications of the biologic era. Neuro Oncol 19(6):750–761PubMedGoogle Scholar
  36. 36.
    Paugh BS, Broniscer A, Qu C, Miller CP, Zhang J, Tatevossian RG et al (2011) Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma. J Clin Oncol 29(30):3999–4006CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Paugh BS, Qu C, Jones C, Liu Z, Adamowicz-Brice M, Zhang J et al (2010) Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol 28(18):3061–3068CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Pfister S, Janzarik WG, Remke M, Ernst A, Werft W, Becker N et al (2008) BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest 118(5):1739–1749CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Qaddoumi I, Orisme W, Wen J, Santiago T, Gupta K, Dalton JD et al (2016) Genetic alterations in uncommon low-grade neuroepithelial tumors: BRAF, FGFR1, and MYB mutations occur at high frequency and align with morphology. Acta Neuropathol 131(6):833–845CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Raabe E, Kieran MW, Cohen KJ (2013) New strategies in pediatric gliomas: molecular advances in pediatric low-grade gliomas as a model. Clin Cancer Res 19(17):4553–4558CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ramkissoon LA, Horowitz PM, Craiga JM, Ramkissoon SH, Rich BE, Schumacher SE et al (2013) Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic truncating rearrangements in the transcription factor MYBL1. Proc Natl Acad Sci USA 110(20):8188–8193CrossRefPubMedGoogle Scholar
  42. 42.
    Rodriguez EF, Scheithauer BW, Giannini C, Rynearson A, Cen L, Hoesley B et al (2011) PI3 K/AKT pathway alterations are associated with clinically aggressive and histologically anaplastic subsets of pilocytic astrocytoma. Acta Neuropathol 121(3):407–420CrossRefPubMedGoogle Scholar
  43. 43.
    Rodriguez FJ, Lim KS, Bowers D, Eberhart CG (2013) Pathological and molecular advances in pediatric low-grade astrocytoma. Annu Rev Pathol 8:361–379CrossRefPubMedGoogle Scholar
  44. 44.
    Ruas M, Peters G (1998) The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta 1378(2):F115–F177PubMedGoogle Scholar
  45. 45.
    Ryall S, Krishnatry R, Arnoldo A, Buczkowicz P, Mistry M, Siddaway R et al (2016) Targeted detection of genetic alterations reveal the prognostic impact of H3K27 M and MAPK pathway aberrations in paediatric thalamic glioma. Acta Neuropathol Commun 4(1):93CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ryall S, Tabori U, Hawkins C (2017) A comprehensive review of paediatric low-grade diffuse glioma: pathology, molecular genetics and treatment. Brain Tumor Pathol 34(2):56–61CrossRefGoogle Scholar
  47. 47.
    Schiffman JD, Hodgson JG, VandenBerg SR, Flaherty P, Polley MY, Yu M et al (2010) Oncogenic BRAF mutation with CDKN2A inactivation is characteristic of a subset of pediatric malignant astrocytomas. Cancer Res 70(2):512–519CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Schindler G, Capper D, Meyer J, Janzarik W, Omran H, Herold-Mende C et al (2011) Analysis of BRAF V600E mutation in 1320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121(3):397–405CrossRefPubMedGoogle Scholar
  49. 49.
    Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482(7384):226–231CrossRefPubMedGoogle Scholar
  50. 50.
    Sievert AJ, Fisher MJ (2009) Pediatric low-grade gliomas. J Child Neurol 24(11):1397–1408CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Sievert AJ, Jackson EM, Gai X, Hakonarson H, Judkins AR, Resnick AC et al (2009) Duplication of 7q34 in pediatric low-grade astrocytomas detected by high-density single-nucleotide polymorphism-based genotype arrays results in a novel BRAF fusion gene. Brain Pathol 19(3):449–458CrossRefPubMedGoogle Scholar
  52. 52.
    Smith JS, Perry A, Borell TJ, Lee HK, O’fallon J, Hosek SM et al (2000) Alterations of chromosome arms 1p and 19q as predictors of survival in oligodendrogliomas, astrocytomas, and mixed oligoastrocytomas. J Clin Oncol 18(3):636–656CrossRefPubMedGoogle Scholar
  53. 53.
    Solomon DA, Wood MD, Tihan T, Bollen AW, Gupta N, Phillips JJ et al (2016) Diffuse midline gliomas with histone H3-K27M mutation: a series of 47 cases assessing the spectrum of morphologic variation and associated genetic alterations. Brain Pathol 26(5):569–580CrossRefPubMedGoogle Scholar
  54. 54.
    Sturm D, Pfister SM, Jones DTW (2017) Pediatric gliomas: current concepts on diagnosis, biology, and clinical management. J Clin Oncol 35(21):2370–2377CrossRefPubMedGoogle Scholar
  55. 55.
    Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DTW, Konermann C et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22(4):425–437CrossRefPubMedGoogle Scholar
  56. 56.
    Takami H, Yoshida A, Fukushima S, Arita H, Matsushita Y, Nakamura T et al (2015) Revisiting TP53 mutations and immunohistochemistry—a comparative study in 157 diffuse gliomas. Brain Pathol 25(3):256–265CrossRefPubMedGoogle Scholar
  57. 57.
    Tanboon J, Williams EA, Louis DN (2016) The diagnostic use of immunohistochemical surrogates for signature molecular genetic alterations in gliomas. J Neuropathol Exp Neurol 75(1):4–18CrossRefPubMedGoogle Scholar
  58. 58.
    Tatevossian RG, Tang B, Dalton J, Forshew T, Lawson AR, Ma J et al (2010) MYB upregulation and genetic aberrations in a subset of pediatric low-grade gliomas. Acta Neuropathol 120(6):731–743CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Wiestler B, Capper D, Holland-Letz T, Korshunov A, von Deimling A, Pfister SM et al (2013) ATRX loss refines the classification of anaplastic gliomas and identifies a subgroup of IDH mutant astrocytic tumors with better prognosis. Acta Neuropathol 126(3):443–451CrossRefPubMedGoogle Scholar
  60. 60.
    Wisoff JH, Sanford RA, Heier LA, Sposto R, Burger PC, Yates AJ et al (2011) Primary neurosurgery for pediatric low-grade gliomas: a prospective multi-institutional study from the Children’s Oncology Group. Neurosurgery 68(6):1548–1554 (discussion 1554–1545) CrossRefPubMedGoogle Scholar
  61. 61.
    Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44(3):251–253CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(8):765–773CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Zhang J, Wu G, Miller CP, Tatevossian RG, Dalton JD, Tang B et al (2013) Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 45(6):602–612CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Rui Ryan Yang
    • 1
    • 2
    • 3
  • Abudumijiti Aibaidula
    • 3
  • Wei-wei Wang
    • 4
  • Aden Ka-Yin Chan
    • 1
  • Zhi-feng Shi
    • 3
  • Zhen-yu Zhang
    • 5
  • Danny Tat Ming Chan
    • 6
  • Wai Sang Poon
    • 6
  • Xian-zhi Liu
    • 5
  • Wen-cai Li
    • 4
  • Rui-qi Zhang
    • 1
  • Yan-Xi Li
    • 1
  • Nellie Yuk-Fei Chung
    • 1
    • 2
  • Hong Chen
    • 7
  • Jingsong Wu
    • 3
  • Liangfu Zhou
    • 3
  • Kay Ka-Wai Li
    • 1
    • 2
  • Ho-Keung Ng
    • 1
    • 2
  1. 1.Department of Anatomical and Cellular PathologyThe Chinese University of Hong Kong, Prince of Wales HospitalShatinChina
  2. 2.Shenzhen Research InstituteThe Chinese University of Hong KongShenzhenChina
  3. 3.Department of Neurosurgery, Huashan HospitalFudan UniversityShanghaiChina
  4. 4.Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
  5. 5.Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
  6. 6.Department of NeurosurgeryThe Chinese University of Hong Kong, Prince of Wales HospitalShatinChina
  7. 7.Department of Pathology, Huashan HospitalFudan UniversityShanghaiChina

Personalised recommendations