Acta Neuropathologica

, Volume 127, Issue 6, pp 881–895

Comparative multidimensional molecular analyses of pediatric diffuse intrinsic pontine glioma reveals distinct molecular subtypes

  • Amanda M. Saratsis
  • Madhuri Kambhampati
  • Kendall Snyder
  • Sridevi Yadavilli
  • Joseph M. Devaney
  • Brennan Harmon
  • Jordan Hall
  • Eric H. Raabe
  • Ping An
  • Melanie Weingart
  • Brian R. Rood
  • Suresh N. Magge
  • Tobey J. MacDonald
  • Roger J. Packer
  • Javad Nazarian
Original Paper

Abstract

Diffuse intrinsic pontine glioma (DIPG) is a highly morbid form of pediatric brainstem glioma. Here, we present the first comprehensive protein, mRNA, and methylation profiles of fresh-frozen DIPG specimens (n = 14), normal brain tissue (n = 10), and other pediatric brain tumors (n = 17). Protein profiling identified 2,305 unique proteins indicating distinct DIPG protein expression patterns compared to other pediatric brain tumors. Western blot and immunohistochemistry validated upregulation of Clusterin (CLU), Elongation Factor 2 (EF2), and Talin-1 (TLN1) in DIPGs studied. Comparisons to mRNA expression profiles generated from tumor and adjacent normal brain tissue indicated two DIPG subgroups, characterized by upregulation of Myc (N-Myc) or Hedgehog (Hh) signaling. We validated upregulation of PTCH, a membrane receptor in the Hh signaling pathway, in a subgroup of DIPG specimens. DNA methylation analysis indicated global hypomethylation of DIPG compared to adjacent normal tissue specimens, with differential methylation of 24 genes involved in Hh and Myc pathways, correlating with protein and mRNA expression patterns. Sequencing analysis showed c.83A>T mutations in the H3F3A or HIST1H3B gene in 77 % of our DIPG cohort. Supervised analysis revealed a unique methylation pattern in mutated specimens compared to the wild-type DIPG samples. This study presents the first comprehensive multidimensional protein, mRNA, and methylation profiling of pediatric brain tumor specimens, detecting the presence of two subgroups within our DIPG cohort. This multidimensional analysis of DIPG provides increased analytical power to more fully explore molecular signatures of DIPGs, with implications for evaluating potential molecular subtypes and biomarker discovery for assessing response to therapy.

Keywords

Diffuse intrinsic pontine glioma (DIPG) Brainstem glioma Proteomics Histone H3 Myc oncogene Hedgehog 

Supplementary material

401_2013_1218_MOESM1_ESM.pdf (333 kb)
Online Resource 1 Pediatric Brain Tumor Tissue Protein Expression Profiles. Principal component analysis (PCA) of tumor protein profiles (fold change values of protein expression in tumor compared to average expression across all normal brain tissue) demonstrates independent clustering of DIPG tumor specimens (navy blue) from other tumor types (PDF 332 kb)
401_2013_1218_MOESM2_ESM.pdf (6.1 mb)
Online Resource 2 Pediatric Brain Tumor Tissue Protein Expression Profiles. Protein expression profiles of brain tumor tissue specimens (n=31), reported as fold change in expression for each tumor vs. average expression across all normal tissue specimens (PDF 6242 kb)
401_2013_1218_MOESM3_ESM.pdf (2.2 mb)
Online Resource 3 Pairwise DIPG Tissue Protein Expression Profiles. Tissue protein expression profiles of DIPG patients (n=10), reported as fold change in expression for each tumor vs. normal specimen pair (PDF 2252 kb)
401_2013_1218_MOESM4_ESM.pdf (227 kb)
Online Resource 4 Comparative Analysis of DIPG Protein Expression Profiles. Filtered ANOVA results (p-value<0.05 and FC -2 or 2) comparing protein expression profiles of DIPGs by molecular subgroup (pairwise tumor vs. normal fold change values), reported as fold change expression values in Subgroup 1 vs. Subgroup 2 (PDF 227 kb)
401_2013_1218_MOESM5_ESM.pdf (401 kb)
Online Resource 5 Comparison of DIPG CSF, Fresh Frozen, and Formalin Fixed Paraffin Embedded (FFPE) Tissue Proteomes. Listing of detected proteins (Swiss-Prot IDs) in DIPG CSF, Fresh Frozen and FFPE Tissue, with overlap between datasets (PDF 401 kb)
401_2013_1218_MOESM6_ESM.pdf (208 kb)
Online Resource 6 Spectral Representation of TLN1, EF2 and CLU. Tissue protein profiles of specimens from Patient IDs 6 and 7 were inspected for the presence of spectra representing TLN1, EF2 and CLU. Each spectra representing the parent ion (MS) was further searched to confirm the presence of identified peptide in the amino acid sequence (MS/MS). Each spectra represents one positively identified peptide of a given protein as identified by b and y ions listed in accompanying tables (PDF 207 kb)
401_2013_1218_MOESM7_ESM.pdf (1.1 mb)
Online Resource 7 Pediatric Brain Tumor Tissue mRNA Expression Profiles. mRNA expression profiles of brain tumor tissue specimens (n=28), reported as fold change in expression for each tumor vs. average expression across all normal tissue specimens (ANOVA, p-value Dx <0.05 and FC -2 or 2) (PDF 1088 kb)
401_2013_1218_MOESM8_ESM.pdf (257 kb)
Online Resource 8 Unsupervised clustering of Tumor mRNA profiles. Unsupervised hierarchical clustering of tumor tissue mRNA expression profiles (fold change values of mRNA expression in tumor compared to average expression across all normal brain tissue specimens) identified differential expression of 1,249 genes. DIPGs cluster independently from other tumor types but closest to supratentorial astrocytomas (ANOVA, p-value<0.05 and FC-2 or 2): (*) H3.3 K27M, (**) H3.1 K27M, ( ) H3 wild type (PDF 257 kb)
401_2013_1218_MOESM9_ESM.pdf (260 kb)
Online resource 9 Unsupervised hierarchical clustering of high-grade astrocytoma mRNA expression values (tumor vs. average normal FC values: DIPG n=13, Yellow; pediatric supratentorial GBM n=4, Green) demonstrate unique profiles by tumor location and Histone 3 K27M mutation status (H3.1 Red, H3.3 Orange, H3 wild type Gray) (PDF 260 kb)
401_2013_1218_MOESM10_ESM.pdf (3 mb)
Online Resource 10 Pairwise DIPG Tissue mRNA Expression Profiles (Part 1 of 3). mRNA expression profiles of DIPG tissue (n=8), reported as fold change in expression for each tumor vs. normal specimen pair (PDF 3109 kb)
401_2013_1218_MOESM11_ESM.pdf (3.1 mb)
Online Resource 10 Pairwise DIPG Tissue mRNA Expression Profiles (Part 2 of 3). mRNA expression profiles of DIPG tissue (n=8), reported as fold change in expression for each tumor vs. normal specimen pair (PDF 3200 kb)
401_2013_1218_MOESM12_ESM.pdf (2.9 mb)
Online Resource 10 Pairwise DIPG Tissue mRNA Expression Profiles (Part 3 of 3). mRNA expression profiles of DIPG tissue (n=8), reported as fold change in expression for each tumor vs. normal specimen pair (PDF 2924 kb)
401_2013_1218_MOESM13_ESM.pdf (2.9 mb)
Online Resource 11 Comparative Analysis of DIPG mRNA Expression Profiles. Comparison of mRNA expression profiles (pairwise tumor vs. normal fold change values) by molecular subgroups revealed through unsupervised clustering, reported as fold change expression values in Subgroup 1 vs. Subgroup 2 (PDF 2965 kb)
401_2013_1218_MOESM14_ESM.pdf (223 kb)
Online Resource 12 Unsupervised clustering of DIPG mRNA profiles. Unsupervised hierarchical clustering of DIPG tissue mRNA expression profiles revealed two distinct DIPG subgroups, Subgroup 1 (red) and Subgroup 2 (blue), with differential expression of 158 genes (ANOVA, p- value<0.05, FC<-2 or >2): (*) H3.3 K27M, (**) H3.1 K27M, ( ) H3 wild type (PDF 223 kb)
401_2013_1218_MOESM15_ESM.pdf (217 kb)
Online Resource 13 Role of TLN1 and CLU in the Canonical Actin Cytoskeletal Signaling Pathway. Functional pathways analysis of DIPG tissue protein profiles revealed Actin Cytoskeletal Signaling as the top pathway of interaction. Dense interaction with validated tumor tissue proteins Clusterin (CLU) and Talin-1 (TLN1) is observed. Protein expression levels are depicted as up- (red) or down- (green) regulated fold change values (tumor vs. normal) (PDF 217 kb)
401_2013_1218_MOESM16_ESM.pdf (156 kb)
Online Resource 14 Differential Expression of Genes involved in Myc and Hh Pathways Identified through Functional Pathway Analysis of DIPG Subgroups. Functional pathway analysis of gene expression profiles from DIPG and normal tissue implicated differential expression of genes related to Myc and Hh signaling pathways between DIPG Subgroup 1 and 2. Gene expression fold changes are represented as average of pairwise tumor vs. normal expression values across specimens in a given subgroup, listed in parentheses following each gene (PDF 155 kb)
401_2013_1218_MOESM17_ESM.pdf (375 kb)
Online Resource 15 Functional Analysis of Molecular Profiles Reveals Differential expression of Myc and Hh Signaling Pathways between DIPG Subgroups.Top Panel Comparative functional analysis of DIPG tumor tissue molecular profiles revealed differential activity of regulatory molecules Myc (top) and GLI1 (Hh pathway molecule, bottom) between Subgroup 1 and 2. Gene expression in respective molecular networks depicted as fold change values (pairwise tumor vs. normal) in a Myc (PID 3) and Hh patient (PID 13). Heat map representation of mRNA dysregulation observed in Myc (top) and Hh (bottom) networks are depicted. Bottom Panel Hedgehog (Hh) pathway analysis depicts mRNA dysregulation in a Hh patient (PID 13). mRNA expression levels are depicted as up- (red) or down- (green) regulated fold change values (tumor vs. normal)(PDF 375 kb)
401_2013_1218_MOESM18_ESM.pdf (211 kb)
Online Resource 16 Sanger Sequencing of H3F3A and HIST1H3B Mutation in DIPG Specimens. Sanger sequencing chromatogram demonstrating H3F3A and HIST1H3B mutation encoding pLys27Met (K27M) substitution in DIPG tumor tissue. (*) indicates A→T substitution in mutant specimens (PDF 210 kb)
401_2013_1218_MOESM19_ESM.pdf (241 kb)
Online Resource 17 Supervised hierarchical clustering of DIPG protein expression profiles (n=14, tumor vs. average normal FC values) revealed significantly 112 differentially expressed proteins by Histone 3 K27M mutation status (ANOVA, p-value<0.05 and FC<-2 or >2, H3.1: Red, H3.3: Orange, H3 wild type: Gray) (PDF 240 kb)
401_2013_1218_MOESM20_ESM.pdf (371 kb)
Online Resource 18 Principle component representation of high-grade astrocytoma mRNA expression profiles (DIPG n=13: yellow, pediatric supratentorial GBM n=3: green, tumor vs. average normal FC values) representing 2,274 significantly differentially expressed molecules detected on supervised analysis by tumor location and demonstrating unsupervised profile clustering by Histone 3 K27M mutation status (ANOVA, p-value<0.05 and FC<-2 or >2, H3.1 Red, H3.3 Orange, H3 wild type Gray) (PDF 371 kb)
401_2013_1218_MOESM21_ESM.pdf (341 kb)
Online Resource 19 Differential Patterns of mRNA Expression in DIPG tissue based on H3.3 K27M Mutation Status. Top Panel Supervised clustering of pairwise mRNA profiles by H3.3 mutation status, demonstrating 345 differentally expressed genes between mutant (n=5) and wild type (n=4) patients (ANOVA, p value <0.05, FC>-2 or <2). H3.1 mutation denoted by (*). Bottom Panel Pathways analysis of dysregulated genes identified in analysis above (Top Panel). mRNA expression levels are provided in parentheses as up- (red) and down- (green) regulated fold change values (mutant vs. wild type)(PDF 341 kb)
401_2013_1218_MOESM22_ESM.pdf (178 kb)
Online Resource 20 Functional Analysis of Gene Dysregulation Based on Histone H3.3 K27M Status. Top networks of molecular interaction and biological function were identified via functional pathway analysis of differentially expressed genes in DIPG by H3.3 K27M status. mRNA expression levels are provided in parentheses as fold change values (pairwise tumor vs. normal) (PDF 178 kb)
401_2013_1218_MOESM23_ESM.pdf (300 kb)
Online Resource 21 Immunohistochemical Staining of Adult GBM Tissue for ATRX. Adult GBM tissue was stained as a positive control for ATRX expression. Scale bar = 100μm) (PDF 300 kb)
401_2013_1218_MOESM24_ESM.pdf (18.1 mb)
Online Resource 22 DIPG Tissue DNA Methylation Profiles. DNA methylation profiles of DIPG patients (n=9), reported as fold change in methylation in tumor vs. normal tissue (ANOVA, p-value with FDR<0.05 and FC <-3 or >3) (PDF 18576 kb)
401_2013_1218_MOESM25_ESM.pdf (39.8 mb)
Online Resource 23 Pairwise DIPG Tissue DNA Methylation Profiles (Part 1 of 2). DNA methylation profiles of DIPG patients (n=9), reported as fold change in methylation for each tumor vs. normal specimen pair (PDF 40708 kb)
401_2013_1218_MOESM26_ESM.pdf (36.5 mb)
Online Resource 23 Pairwise DIPG Tissue DNA Methylation Profiles (Part 2 of 2). DNA methylation profiles of DIPG patients (n=9), reported as fold change in methylation for each tumor vs. normal specimen pair (PDF 37359 kb)
401_2013_1218_MOESM27_ESM.pdf (920 kb)
Online Resource 24 Comparative Analysis of DIPG DNA Methylation Profiles by Molecular Subgroup. Filtered ANOVA results ( p-value with FDR <0.05 and FC <-2 or >2) of DNA methylation profiles (pairwise tumor vs. normal fold change values) compared by DIPG subgroup, reported as fold change methylation values in Subgroup 1 vs. Subgroup 2 (PDF 920 kb)
401_2013_1218_MOESM28_ESM.pdf (176 kb)
Online Resource 25 Patterns of DNA Methylation Supervised by DIPG Subgroups. Supervised comparison of genome-wide methylation profiles between DIPG Subgroup 1 and 2 revealed 786 differentially methylated loci. Top canonical pathways (top section) and networks of molecular interactions (bottom section) were identified, with differentially methylated genes between the two subgroups. Fold changes are listed in parentheses following each gene (PDF 176 kb)
401_2013_1218_MOESM29_ESM.pdf (201 kb)
Online Resource 26 Differential DNA Methylation of Genes Involved in Myc and Hh Pathways Between DIPG Subgroups. A total of 29 differentially methylated genes pathways between DIPG subgroups 1 and 2 were identified through unsupervised analysis of methylation status of 486 CpG loci related to Myc and Hh signaling. DNA methylation (CpG) sites for each gene are presented along with gene (column 3) and protein (column 4) expression values. For methylation analysis, we used average pairwise tumor vs. normal fold change values in Subgroup 1 relative to Subgroup 2; for gene and protein expressions, we used average pairwise tumor vs. normal fold change values by subgroup. Fold changes are listed in parentheses following each gene (PDF 201 kb)
401_2013_1218_MOESM30_ESM.pdf (1.5 mb)
Online Resource 27 Comparative Analysis of Tissue DNA Methylation Profiles by H3.3 Mutation Status. Filtered ANOVA results (p-value<0.05 and FC<-3 or >3) of DIPG DNA methylation profiles compared by H3.3 K27M mutation status, reported as fold change methylation values in H3.3 mutant vs. wild type patients (PDF 1555 kb)
401_2013_1218_MOESM31_ESM.pdf (320 kb)
Online Resource 28 Differential Patterns of DNA Methylation in DIPG Tissue by H3.3 K27M Mutation Status. Supervised analysis of DNA methylation profiles based on H3.3 K27M mutation status (n=9 pairs, pairwise tumor vs. normal fold change values) revealed 645 differentially methylated loci (ANOVA, p-value <0.05 and FC <-3 or >3). Genome wide mapping of differences in DNA methylation patterns between H3.3 K27M mutants and wild type tissue specimens is depicted. X-axis=Chromosomes 1-Y. Y-axis=Fold change in DNA methylation of identified gene across all related CpG sites in mutant relative to wild type tissue (PDF 320 kb)
401_2013_1218_MOESM32_ESM.pdf (785 kb)
Online Resource 29 Comparative Analysis of Pairwise DIPG DNA Methylation Profiles by H3.3 Mutation Status. Filtered ANOVA results (p-value<0.05 and FC<-3 or >3) of pairwise DIPG DNA methylation profiles (pairwise tumor vs. normal fold change values) compared by H3.3 K27Mmutation status, reported as fold change methylation values in H3.3 mutant vs. wild type patients (PDF 784 kb)
401_2013_1218_MOESM33_ESM.pdf (291 kb)
Online Resource 30 Supervised Clustering of Methylation in DIPG tissue based on H3F3A Mutation Status. Top Panel Supervised analysis of DNA methylation profiles based on H3.3 mutation status revealed 645 differentially methylated loci. The heat map depicted represents the 212 loci with similar methylation pattern in all specimens based on H3.3 mutation status. H3.1 Mutant denoted by (*). Bottom Panel Functional analysis of loci hypomethylated in all H3.3 mutants mapped to cell death inhibition (see Online Resource 31). DNA methylation, listed in parentheses as fold change values (pairwise tumor vs. normal) in mutant specimens relative to wild type specimens, and p-value are provided for each molecule (PDF 290 kb)
401_2013_1218_MOESM34_ESM.pdf (174 kb)
Online Resource 31 Patterns of DNA Methylation in DIPG Supervised by H3.3 K27M Mutation Status. Pathway analysis of supervised H3.3 mutation status data identified top biological functions and molecular networks of interaction. Fold changes are listed in parentheses following each gene (PDF 174 kb)

References

  1. 1.
    Ajit C, Tamhane DDD (2000) Statistics and data analysis: from elementary to intermediate. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  2. 2.
    Angelini P, Hawkins C, Laperriere N, Bouffet E, Bartels U (2011) Post mortem examinations in diffuse intrinsic pontine glioma: challenges and chances. J Neurooncol 101(1):75–81. doi:10.1007/s11060-010-0224-7 PubMedCrossRefGoogle Scholar
  3. 3.
    Barrow J, Adamowicz-Brice M, Cartmill M, MacArthur D, Lowe J, Robson K, Brundler MA, Walker DA, Coyle B, Grundy R (2011) Homozygous loss of ADAM3A revealed by genome-wide analysis of pediatric high-grade glioma and diffuse intrinsic pontine gliomas. Neuro Oncol 13(2):212–222. doi:10.1093/neuonc/noq158 PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Bartels U, Hawkins C, Vezina G, Kun L, Souweidane M, Bouffet E (2011) Proceedings of the diffuse intrinsic pontine glioma (DIPG) Toronto Think Tank: advancing basic and translational research and cooperation in DIPG. J Neurooncol 105(1):119–125. doi:10.1007/s11060-011-0704-4 PubMedCrossRefGoogle Scholar
  5. 5.
    Baudis M (2012) Progenetix oncogenomic online resource: http://www.progenetix.net. http://www.progenetix.org/cgi-bin/projectsHome.cgi?project=DIPG. Accessed May 3 2013
  6. 6.
    Bax DA, Mackay A, Little SE, Carvalho D, Viana-Pereira M, Tamber N, Grigoriadis AE, Ashworth A, Reis RM, Ellison DW, Al-Sarraj S, Hargrave D, Jones C (2010) A distinct spectrum of copy number aberrations in pediatric high-grade gliomas. Clin Cancer Res 16(13):3368–3377. doi:10.1158/1078-0432.CCR-10-0438 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Belot N, Rorive S, Doyen I, Lefranc F, Bruyneel E, Dedecker R, Micik S, Brotchi J, Decaestecker C, Salmon I, Kiss R, Camby I (2001) Molecular characterization of cell substratum attachments in human glial tumors relates to prognostic features. Glia 36(3):375–390PubMedCrossRefGoogle Scholar
  8. 8.
    Broniscer A, Baker JN, Baker SJ, Chi SN, Geyer JR, Morris EB, Gajjar A (2010) Prospective collection of tissue samples at autopsy in children with diffuse intrinsic pontine glioma. Cancer 116(19):4632–4637. doi:10.1002/cncr.25405 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Chan KM, Fang D, Gan H, Hashizume R, Yu C, Schroeder M, Gupta N, Mueller S, James CD, Jenkins R, Sarkaria J, Zhang Z (2013) The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev. doi:10.1101/gad.217778.113 Google Scholar
  10. 10.
    Chen D, Wang Y, Zhang K, Jiao X, Yan B, Liang J (2012) Antisense oligonucleotide against clusterin regulates human hepatocellular carcinoma invasion through transcriptional regulation of matrix metalloproteinase-2 and e-cadherin. Int J Mol Sci 13(8):10594–10607. doi:10.3390/ijms130810594 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150(1):12–27. doi:10.1016/j.cell.2012.06.013 PubMedCrossRefGoogle Scholar
  12. 12.
    Dhayalan A, Tamas R, Bock I, Tattermusch A, Dimitrova E, Kudithipudi S, Ragozin S, Jeltsch A (2011) The ATRX-ADD domain binds to H3 tail peptides and reads the combined methylation state of K4 and K9. Hum Mol Genet 20(11):2195–2203. doi:10.1093/hmg/ddr107 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Ehrlich M, Lacey M (2013) DNA hypomethylation and hemimethylation in cancer. Adv Exp Med Biol 754:31–56. doi:10.1007/978-1-4419-9967-2_2 PubMedCrossRefGoogle Scholar
  14. 14.
    Eisenhart C (1947) The assumptions underlying the analysis of variance. Biometrics 1(3):1–21CrossRefGoogle Scholar
  15. 15.
    Ekici AI, Eren B, Turkmen N, Comunoglu N, Fedakar R (2008) Clusterin expression in non-neoplastic adenohypophyses and pituitary adenomas: cytoplasmic clusterin localization in adenohypophysis is related to aging. Endocr Pathol 19(1):47–53. doi:10.1007/s12022-008-9015-5 PubMedCrossRefGoogle Scholar
  16. 16.
    Frazier JL, Lee J, Thomale UW, Noggle JC, Cohen KJ, Jallo GI (2009) Treatment of diffuse intrinsic brainstem gliomas: failed approaches and future strategies. J Neurosurg Pediatr 3(4):259–269. doi:10.3171/2008.11.PEDS08281 PubMedCrossRefGoogle Scholar
  17. 17.
    Fu Y, Lai Y, Wang Q, Liu X, He W, Zhang H, Fan C, Yang G (2013) Overexpression of clusterin promotes angiogenesis via the vascular endothelial growth factor in primary ovarian cancer. Mol Med Rep. doi:10.3892/mmr.2013.1436 PubMedCentralGoogle Scholar
  18. 18.
    Fullgrabe J, Kavanagh E, Joseph B (2011) Histone onco-modifications. Oncogene 30(31):3391–3403. doi:10.1038/onc.2011.121 PubMedCrossRefGoogle Scholar
  19. 19.
    Gielen GH, Gessi M, Hammes J, Kramm CM, Waha A, Pietsch T (2013) H3F3A K27M mutation in pediatric CNS tumors: a marker for diffuse high-grade astrocytomas. Am J Clin Pathol 139(3):345–349. doi:10.1309/AJCPABOHBC33FVMO PubMedCrossRefGoogle Scholar
  20. 20.
    Gilbertson RJ, Hill DA, Hernan R, Kocak M, Geyer R, Olson J, Gajjar A, Rush L, Hamilton RL, Finkelstein SD, Pollack IF (2003) ERBB1 is amplified and overexpressed in high-grade diffusely infiltrative pediatric brain stem glioma. Clin Cancer Res 9(10 Pt 1):3620–3624PubMedGoogle Scholar
  21. 21.
    Hankinson TC, Campagna EJ, Foreman NK, Handler MH (2011) Interpretation of magnetic resonance images in diffuse intrinsic pontine glioma: a survey of pediatric neurosurgeons. J Neurosurg Pediatr 8(1):97–102. doi:10.3171/2011.4.PEDS1180 PubMedCrossRefGoogle Scholar
  22. 22.
    Herranz M, Esteller M (2007) DNA methylation and histone modifications in patients with cancer: potential prognostic and therapeutic targets. Methods Mol Biol 361:25–62. doi:10.1385/1-59745-208-4:25 PubMedGoogle Scholar
  23. 23.
    Hon GC, Hawkins RD, Caballero OL, Lo C, Lister R, Pelizzola M, Valsesia A, Ye Z, Kuan S, Edsall LE, Camargo AA, Stevenson BJ, Ecker JR, Bafna V, Strausberg RL, Simpson AJ, Ren B (2012) Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer. Genome Res 22(2):246–258. doi:10.1101/gr.125872.111 PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Hovestadt V, Albrecht S, Kool M, Nantel A, Konermann C, Lindroth A, Jager N, Rausch T, Ryzhova M, Korbel JO, Hielscher T, Hauser P, Garami M, Klekner A, Bognar L, Ebinger M, Schuhmann MU, Scheurlen W, Pekrun A, Fruhwald MC, Roggendorf W, Kramm C, Durken M, Atkinson J, Lepage P, Montpetit A, Zakrzewska M, Zakrzewski K, Liberski PP, Dong Z, Siegel P, Kulozik AE, Zapatka M, Guha A, Malkin D, Felsberg J, Reifenberger G, von Deimling A, Ichimura K, Collins VP, Witt H, Milde T, Witt O, Zhang C, Castelo-Branco P, Lichter P, Faury D, Tabori U, Plass C, Majewski J, Pfister SM, Jabado N (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482(7384):226–231. doi:10.1038/nature10833 Google Scholar
  25. 25.
    Jansen MH, van Vuurden DG, Vandertop WP, Kaspers GJ (2012) Diffuse intrinsic pontine gliomas: a systematic update on clinical trials and biology. Cancer Treat Rev 38(1):27–35. doi:10.1016/j.ctrv.2011.06.007 PubMedCrossRefGoogle Scholar
  26. 26.
    Khan AA, Dace DS, Ryazanov AG, Kelly J, Apte RS (2010) Resveratrol regulates pathologic angiogenesis by a eukaryotic elongation factor-2 kinase-regulated pathway. Am J Pathol 177(1):481–492. doi:10.2353/ajpath.2010.090836 PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Khuong-Quang DA, Buczkowicz P, Rakopoulos P, Liu XY, Fontebasso AM, Bouffet E, Bartels U, Albrecht S, Schwartzentruber J, Letourneau L, Bourgey M, Bourque G, Montpetit A, Bourret G, Lepage P, Fleming A, Lichter P, Kool M, von Deimling A, Sturm D, Korshunov A, Faury D, Jones DT, Majewski J, Pfister SM, Jabado N, Hawkins C (2012) K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 124(3):439–447. doi:10.1007/s00401-012-0998-0 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Khuong-Quang DA, Gerges N, Jabado N (2012) Mutations in histone H3.3 and chromatin remodeling genes drive pediatric and young adult glioblastomas. Med Sci (Paris) 28(10):809–812. doi:10.1051/medsci/20122810004 CrossRefGoogle Scholar
  29. 29.
    Kool M, Korshunov A, Remke M, Jones DT, Schlanstein M, Northcott PA, Cho YJ, Koster J, Schouten-van Meeteren A, van Vuurden D, Clifford SC, Pietsch T, von Bueren AO, Rutkowski S, McCabe M, Collins VP, Backlund ML, Haberler C, Bourdeaut F, Delattre O, Doz F, Ellison DW, Gilbertson RJ, Pomeroy SL, Taylor MD, Lichter P, Pfister SM (2012) Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol 123(4):473–484. doi:10.1007/s00401-012-0958-8 PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Lewis PW, Elsaesser SJ, Noh KM, Stadler SC, Allis CD (2010) Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc Natl Acad Sci U S A 107(32):14075–14080. doi:10.1073/pnas.1008850107 PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Lewis PW, Muller MM, Koletsky MS, Cordero F, Lin S, Banaszynski LA, Garcia BA, Muir TW, Becher OJ, Allis CD (2013) Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science. doi:10.1126/science.1232245 Google Scholar
  32. 32.
    Ling IF, Bhongsatiern J, Simpson JF, Fardo DW, Estus S (2012) Genetics of clusterin isoform expression and Alzheimer’s disease risk. PLoS ONE 7(4):e33923. doi:10.1371/journal.pone.0033923 PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Mace EM, Zhang J, Siminovitch KA, Takei F (2010) Elucidation of the integrin LFA-1-mediated signaling pathway of actin polarization in natural killer cells. Blood 116(8):1272–1279. doi:10.1182/blood-2009-12-261487 PubMedCrossRefGoogle Scholar
  34. 34.
    Monje M, Mitra SS, Freret ME, Raveh TB, Kim J, Masek M, Attema JL, Li G, Haddix T, Edwards MS, Fisher PG, Weissman IL, Rowitch DH, Vogel H, Wong AJ, Beachy PA (2011) Hedgehog-responsive candidate cell of origin for diffuse intrinsic pontine glioma. Proc Natl Acad Sci USA 108(11):4453–4458. doi:10.1073/pnas.1101657108 PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Nazarian J, Santi M, Hathout Y, Macdonald TJ (2008) Protein profiling of formalin fixed paraffin embedded tissue: identification of potential biomarkers for pediatric brainstem glioma. Proteomics Clin Appl 2(6):915–924. doi:10.1002/prca.200780061 PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Northcott PA, Korshunov A, Witt H, Hielscher T, Eberhart CG, Mack S, Bouffet E, Clifford SC, Hawkins CE, French P, Rutka JT, Pfister S, Taylor MD (2011) Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 29(11):1408–1414. doi:10.1200/JCO.2009.27.4324 PubMedCrossRefGoogle Scholar
  37. 37.
    Paugh BS, Qu C, Jones C, Liu Z, Adamowicz-Brice M, Zhang J, Bax DA, Coyle B, Barrow J, Hargrave D, Lowe J, Gajjar A, Zhao W, Broniscer A, Ellison DW, Grundy RG, Baker SJ (2010) Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol 28(18):3061–3068. doi:10.1200/JCO.2009.26.7252 PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Perez-Gomez JL, Rodriguez-Alvarez CA, Marhx-Bracho A, Rueda-Franco F (2010) Stereotactic biopsy for brainstem tumors in pediatric patients. Childs Nerv Syst 26(1):29–34. doi:10.1007/s00381-009-1000-x PubMedCrossRefGoogle Scholar
  39. 39.
    Puget S, Philippe C, Bax DA, Job B, Varlet P, Junier MP, Andreiuolo F, Carvalho D, Reis R, Guerrini-Rousseau L, Roujeau T, Dessen P, Richon C, Lazar V, Le Teuff G, Sainte-Rose C, Geoerger B, Vassal G, Jones C, Grill J (2012) Mesenchymal transition and PDGFRA amplification/mutation are key distinct oncogenic events in pediatric diffuse intrinsic pontine gliomas. PLoS ONE 7(2):e30313. doi:10.1371/journal.pone.0030313 PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Qureshi AH, Chaoji V, Maiguel D, Faridi MH, Barth CJ, Salem SM, Singhal M, Stoub D, Krastins B, Ogihara M, Zaki MJ, Gupta V (2009) Proteomic and phospho-proteomic profile of human platelets in basal, resting state: insights into integrin signaling. PLoS ONE 4(10):e7627. doi:10.1371/journal.pone.0007627 PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Rao Malla R, Gopinath S, Alapati K, Gorantla B, Gondi CS, Rao JS (2012) Knockdown of cathepsin B and uPAR inhibits CD151 and alpha3beta1 integrin-mediated cell adhesion and invasion in glioma. Mol Carcinog. doi:10.1002/mc.21915 PubMedGoogle Scholar
  42. 42.
    Ratnikov BI, Partridge AW, Ginsberg MH (2005) Integrin activation by talin. J Thromb Haemost 3(8):1783–1790. doi:10.1111/j.1538-7836.2005.01362.x PubMedCrossRefGoogle Scholar
  43. 43.
    Redondo M, Villar E, Torres-Munoz J, Tellez T, Morell M, Petito CK (2000) Overexpression of clusterin in human breast carcinoma. Am J Pathol 157(2):393–399. doi:10.1016/S0002-9440(10)64552-X PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Saratsis AM, Yadavilli S, Magge S, Rood BR, Perez J, Hill DA, Hwang E, Kilburn L, Packer RJ, Nazarian J (2012) Insights into pediatric diffuse intrinsic pontine glioma through proteomic analysis of cerebrospinal fluid. Neuro Oncol 14(5):547–560. doi:10.1093/neuonc/nos067 PubMedCrossRefGoogle Scholar
  45. 45.
    Scaringi C, Minniti G, Caporello P, Enrici RM (2012) Integrin inhibitor cilengitide for the treatment of glioblastoma: a brief overview of current clinical results. Anticancer Res 32(10):4213–4223PubMedGoogle Scholar
  46. 46.
    Sen S, Ng WP, Kumar S (2012) Contributions of talin-1 to glioma cell-matrix tensional homeostasis. J R Soc Interface 9(71):1311–1317. doi:10.1098/rsif 2011.0567PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Sharma S, Free A, Mei Y, Peiper SC, Wang Z, Cowell JK (2010) Distinct molecular signatures in pediatric infratentorial glioblastomas defined by aCGH. Exp Mol Pathol 89(2):169–174. doi:10.1016/j.yexmp.2010.06.009 PubMedCrossRefGoogle Scholar
  48. 48.
    Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT, Konermann C, Pfaff E, Tonjes M, Sill M, Bender S, Kool M, Zapatka M, Becker N, Zucknick M, Hielscher T, Liu XY, Fontebasso AM, Ryzhova M, Albrecht S, Jacob K, Wolter M, Ebinger M, Schuhmann MU, van Meter T, Fruhwald MC, Hauch H, Pekrun A, Radlwimmer B, Niehues T, von Komorowski G, Durken M, Kulozik AE, Madden J, Donson A, Foreman NK, Drissi R, Fouladi M, Scheurlen W, von Deimling A, Monoranu C, Roggendorf W, Herold-Mende C, Unterberg A, Kramm CM, Felsberg J, Hartmann C, Wiestler B, Wick W, Milde T, Witt O, Lindroth AM, Schwartzentruber J, Faury D, Fleming A, Zakrzewska M, Liberski PP, Zakrzewski K, Hauser P, Garami M, Klekner A, Bognar L, Morrissy S, Cavalli F, Taylor MD, van Sluis P, Koster J, Versteeg R, Volckmann R, Mikkelsen T, Aldape K, Reifenberger G, Collins VP, Majewski J, Korshunov A, Lichter P, Plass C, Jabado N, Pfister SM (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22(4):425–437. doi:10.1016/j.ccr.2012.08.024 PubMedCrossRefGoogle Scholar
  49. 49.
    Sufit A, Donson AM, Birks DK, Knipstein JA, Fenton LZ, Jedlicka P, Hankinson TC, Handler MH, Foreman NK (2012) Diffuse intrinsic pontine tumors: a study of primitive neuroectodermal tumors versus the more common diffuse intrinsic pontine gliomas. J Neurosurg Pediatr 10(2):81–88. doi:10.3171/2012.3.PEDS11316 PubMedCrossRefGoogle Scholar
  50. 50.
    Tabatabai G, Weller M, Nabors B, Picard M, Reardon D, Mikkelsen T, Ruegg C, Stupp R (2010) Targeting integrins in malignant glioma. Target Oncol 5(3):175–181. doi:10.1007/s11523-010-0156-3 PubMedCrossRefGoogle Scholar
  51. 51.
    Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC, Eberhart CG, Parsons DW, Rutkowski S, Gajjar A, Ellison DW, Lichter P, Gilbertson RJ, Pomeroy SL, Kool M, Pfister SM (2012) Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 123(4):465–472. doi:10.1007/s00401-011-0922-z PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Venneti S, Garimella MT, Sullivan LM, Martinez D, Huse JT, Heguy A, Santi M, Thompson CB, Judkins AR (2013) Evaluation of Histone 3 Lysine 27 Trimethylation (H3K27me3) and Enhancer of Zest 2 (EZH2) in pediatric glial and glioneuronal tumors shows decreased H3K27me3 in H3F3A K27M mutant glioblastomas. Brain Pathol. doi:10.1111/bpa.12042 PubMedCentralGoogle Scholar
  53. 53.
    Walker DA, Punt JA, Sokal M (1999) Clinical management of brain stem glioma. Arch Dis Child 80(6):558–564PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Wang C, Jiang K, Kang X, Gao D, Sun C, Li Y, Sun L, Zhang S, Liu X, Wu W, Yang P, Guo K, Liu Y (2012) Tumor-derived secretory clusterin induces epithelial–mesenchymal transition and facilitates hepatocellular carcinoma metastasis. Int J Biochem Cell Biol 44(12):2308–2320. doi:10.1016/j.biocel.2012.09.012 PubMedCrossRefGoogle Scholar
  55. 55.
    Wang Y, Wang X, Zhao H, Liang B, Du Q (2012) Clusterin confers resistance to TNF-alpha-induced apoptosis in breast cancer cells through NF-kappaB activation and Bcl-2 overexpression. J Chemother 24(6):348–357. doi:10.1179/1973947812Y.0000000049 PubMedCrossRefGoogle Scholar
  56. 56.
    Wegener KL, Partridge AW, Han J, Pickford AR, Liddington RC, Ginsberg MH, Campbell ID (2007) Structural basis of integrin activation by talin. Cell 128(1):171–182. doi:10.1016/j.cell.2006.10.048 PubMedCrossRefGoogle Scholar
  57. 57.
    Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, Qu C, Ding L, Huether R, Parker M, Zhang J, Gajjar A, Dyer MA, Mullighan CG, Gilbertson RJ, Mardis ER, Wilson RK, Downing JR, Ellison DW, Baker SJ (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44(3):251–253. doi:10.1038/ng.1102 PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Zarghooni M, Bartels U, Lee E, Buczkowicz P, Morrison A, Huang A, Bouffet E, Hawkins C (2010) Whole-genome profiling of pediatric diffuse intrinsic pontine gliomas highlights platelet-derived growth factor receptor alpha and poly (ADP-ribose) polymerase as potential therapeutic targets. J Clin Oncol 28(8):1337–1344. doi:10.1200/JCO.2009.25.5463 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Amanda M. Saratsis
    • 1
    • 2
  • Madhuri Kambhampati
    • 2
  • Kendall Snyder
    • 2
  • Sridevi Yadavilli
    • 2
  • Joseph M. Devaney
    • 2
    • 3
  • Brennan Harmon
    • 2
  • Jordan Hall
    • 2
  • Eric H. Raabe
    • 4
    • 5
  • Ping An
    • 4
    • 6
  • Melanie Weingart
    • 4
  • Brian R. Rood
    • 7
  • Suresh N. Magge
    • 8
  • Tobey J. MacDonald
    • 9
  • Roger J. Packer
    • 10
    • 11
  • Javad Nazarian
    • 2
    • 3
  1. 1.Division of NeurosurgeryAnn & Robert H. Lurie Children’s Hospital of ChicagoChicago, ILUSA
  2. 2.Center for Genetic Medicine Research, Children’s National Medical CenterWashington, DCUSA
  3. 3.Department of Integrative Systems BiologyGeorge Washington University School of Medicine and Health SciencesWashington, DCUSA
  4. 4.Division of Neuro-PathologyJohns Hopkins University School of MedicineBaltimoreUSA
  5. 5.Division of Pediatric OncologyJohns Hopkins University School of MedicineBaltimoreUSA
  6. 6.Neurobiology DepartmentCollege of Basic Medical Sciences, China Medical UniversityShenyangChina
  7. 7.Division of OncologyCenter for Cancer and Immunology Research, Children’s National Medical CenterWashington, DCUSA
  8. 8.Division of NeurosurgeryChildren’s National Medical CenterWashington, DCUSA
  9. 9.Department of PediatricsEmory University School of MedicineAtlantaUSA
  10. 10.Division of NeurologyCenter for Neuroscience Research, Children’s National Medical CenterWashington, DCUSA
  11. 11.Brain Tumor Institute, Center for Neuroscience and Behavioral Medicine, Children’s National Medical CenterWashington, DCUSA

Personalised recommendations