Skip to main content
Log in

Skeletal muscle α-actin diseases (actinopathies): pathology and mechanisms

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Mutations in the skeletal muscle α-actin gene (ACTA1) cause a range of congenital myopathies characterised by muscle weakness and specific skeletal muscle structural lesions. Actin accumulations, nemaline and intranuclear bodies, fibre-type disproportion, cores, caps, dystrophic features and zebra bodies have all been seen in biopsies from patients with ACTA1 disease, with patients frequently presenting with multiple pathologies. Therefore increasingly it is considered that these entities may represent a continuum of structural abnormalities arising due to ACTA1 mutations. Recently an ACTA1 mutation has also been associated with a hypertonic clinical presentation with nemaline bodies. Whilst multiple genes are known to cause many of the pathologies associated with ACTA1 mutations, to date actin aggregates, intranuclear rods and zebra bodies have solely been attributed to ACTA1 mutations. Approximately 200 different ACTA1 mutations have been identified, with 90 % resulting in dominant disease and 10 % resulting in recessive disease. Despite extensive research into normal actin function and the functional consequences of ACTA1 mutations in cell culture, animal models and patient tissue, the mechanisms underlying muscle weakness and the formation of structural lesions remains largely unknown. Whilst precise mechanisms are being grappled with, headway is being made in terms of developing therapeutics for ACTA1 disease, with gene therapy (specifically reducing the proportion of mutant skeletal muscle α-actin protein) and pharmacological agents showing promising results in animal models and patient muscle. The use of small molecules to sensitise the contractile apparatus to Ca2+ is a promising therapeutic for patients with various neuromuscular disorders, including ACTA1 disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Agrawal PB, Strickland CD, Midgett C, Morales A, Newburger DE et al (2004) Heterogeneity of nemaline myopathy cases with skeletal muscle alpha-actin gene mutations. Ann Neurol 56(1):86–96

    Article  PubMed  CAS  Google Scholar 

  2. Bauer DE, Orkin SH (2011) Update on fetal hemoglobin gene regulation in hemoglobinopathies. Curr Opin Pediatr 23(1):1–8

    Article  PubMed  CAS  Google Scholar 

  3. Beall CJ, Sepanski MA, Fyrberg EA (1989) Genetic dissection of Drosophila myofibril formation: effects of actin and myosin heavy chain null alleles. Gene Dev 3(2):131–140

    Article  PubMed  CAS  Google Scholar 

  4. Bing W, Razzaq A, Sparrow J, Marston S (1998) Tropomyosin and troponin regulation of wild type and E93K mutant actin filaments from Drosophila flight muscle. Charge reversal on actin changes actin-tropomyosin from on to off state. J Biol Chem 273(24):15016–15021

    Article  PubMed  CAS  Google Scholar 

  5. Bornemann A, Petersen MB, Schmalbruch H (1996) Fatal congenital myopathy with actin filament deposits. Acta Neuropathol 92(1):104–108

    Article  PubMed  CAS  Google Scholar 

  6. Clarke NF, Ilkovski B, Cooper S, Valova VA, Robinson PJ et al (2007) The pathogenesis of ACTA1-related congenital fiber type disproportion. Ann Neurol 61(6):552–561

    Article  PubMed  CAS  Google Scholar 

  7. Clarke NF, North KN (2003) Congenital fiber type disproportion-30 years on. J Neuropath Exp Neur 62(10):977–989

    PubMed  Google Scholar 

  8. Conen PE, Murphy EG, Donohue WL (1963) Light and electron microscopic studies of “myogranules” in a child with hypotonia and muscle weakness. Canad Med Assoc J 89:983–986

    PubMed  CAS  Google Scholar 

  9. Costa CF, Rommelaere H, Waterschoot D, Sethi KK, Nowak KJ et al (2004) Myopathy mutations in α-skeletal-muscle actin cause a range of molecular defects. J Cell Sci 117(15):3367–3377

    Article  PubMed  CAS  Google Scholar 

  10. Crawford K, Flick R, Close L, Shelly D, Paul R et al (2002) Mice lacking skeletal muscle actin show reduced muscle strength and growth deficits and die during the neonatal period. Mol Cell Biol 22(16):5887–5896

    Article  PubMed  CAS  Google Scholar 

  11. Cripps RM, Ball E, Stark M, Lawn A, Sparrow JC (1994) Recovery of dominant, autosomal flightless mutants of Drosophila melanogaster and identification of a new gene required for normal muscle structure and function. Genetics 137(1):151–164

    PubMed  CAS  Google Scholar 

  12. D’Amico A, Graziano C, Pacileo G, Petrini S, Nowak KJ et al (2006) Fatal hypertrophic cardiomyopathy and nemaline myopathy associated with ACTA1 K336E mutation. Neuromuscular Disord 16(9–10):548–552

    Article  Google Scholar 

  13. De Paula AM, Franques J, Fernandez C, Monnier N, Lunardi J et al (2009) A TPM3 mutation causing cap myopathy. Neuromuscular Disord 19(10):685–688

    Article  Google Scholar 

  14. Domazetovska A, Ilkovski B, Cooper ST, Ghoddusi M, Hardeman EC et al (2007) Mechanisms underlying intranuclear rod formation. Brain 130(12):3275–3284

    Article  PubMed  Google Scholar 

  15. Domazetovska A, Ilkovski B, Kumar V, Valova VA, Vandebrouck A et al (2007) Intranuclear rod myopathy: molecular pathogenesis and mechanisms of weakness. Ann Neurol 62(6):597–608

    Article  PubMed  CAS  Google Scholar 

  16. dos Remedios CG, Chhabra D, Kekic M, Dedova IV, Tsubakihara M et al (2003) Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 83(2):433–473

    PubMed  Google Scholar 

  17. Drummond DR, Hennessey ES, Sparrow JC (1991) Characterisation of missense mutations in the Act88F gene of Drosophila melanogaster. Mol Gen Genet 226(1–2):70–80

    Article  PubMed  CAS  Google Scholar 

  18. Dubowitz V, Sewry CA (2007) Muscle biopsy: a practical approach, 3rd edn. Saunders Elsevier, Philadelphia

  19. Feng JJ, Marston S (2009) Genotype-phenotype correlations in ACTA1 mutations that cause congenital myopathies. Neuromuscular Disord 19(1):6–16

    Article  Google Scholar 

  20. Fidzianska A, Badurska B, Ryniewicz B, Dembek I (1981) “Cap disease”: new congenital myopathy. Neurol 31(9):1113–1120

    Article  CAS  Google Scholar 

  21. Goebel HH, Anderson JR, Hubner C, Oexle K, Warlo I (1997) Congenital myopathy with excess of thin myofilaments. Neuromuscular Disord 7:160–168

    Article  CAS  Google Scholar 

  22. Goebel HH, Laing NG (2009) Actinopathies and myosinopathies. Brain Pathol 19(3):516–522

    Article  PubMed  CAS  Google Scholar 

  23. Goebel HH, Lenard HG (1992) Congenital myopathies. In: Rowland LP, DiMauro S (eds) Myopathies—handbook of clinical neurology, vol 18(62). Elsevier Science, Amsterdam, pp 331–367

    Google Scholar 

  24. Goebel HH, Piirso A, Warlo I, Schofer O, Kehr S et al (1997) Infantile intranuclear rod myopathy. J Child Neurol 12:22–30

    Article  PubMed  CAS  Google Scholar 

  25. Goebel HH, Warlo I (1997) Nemaline myopathy with intranuclear rods—intranuclear rod myopathy. Neuromuscular Disord 7:13–19

    Article  CAS  Google Scholar 

  26. Haigh SE, Salvi SS, Sevdali M, Stark M, Goulding D et al (2010) Drosophila indirect flight muscle specific Act88F actin mutants as a model system for studying congenital myopathies of the human ACTA1 skeletal muscle actin gene. Neuromuscular Disord 20(6):363–374

    Article  Google Scholar 

  27. Hennessey ES, Harrison A, Drummond DR, Sparrow JC (1992) Mutant actin: a dead end? J Musc Res Cell Motil 13:127–131

    Article  CAS  Google Scholar 

  28. Hung RM, Yoon G, Hawkins CE, Halliday W, Biggar D et al (2010) Cap myopathy caused by a mutation of the skeletal alpha-actin gene ACTA1. Neuromuscular Disord 20(4):238–240

    Article  Google Scholar 

  29. Hutchinson DO, Charlton A, Laing NG, Ilkovski B, North KN (2006) Autosomal dominant nemaline myopathy with intranuclear rods due to mutation of the skeletal muscle ACTA1 gene: clinical and pathological variability within a kindred. Neuromuscular Disord 16(2):113–121

    Article  Google Scholar 

  30. Huxley AF, Niedergerke R (1954) Structural changes during contraction: interference microscopy of living muscle fibres. Nature 173:971–973

    Article  PubMed  CAS  Google Scholar 

  31. Ilkovski B, Clement S, Sewry C, North KN, Cooper ST (2005) Defining alpha-skeletal and alpha-cardiac actin expression in human heart and skeletal muscle explains the absence of cardiac involvement in ACTA1 nemaline myopathy. Neuromuscular Disord 15(12):829–835

    Article  Google Scholar 

  32. Ilkovski B, Cooper ST, Nowak K, Ryan MM, Yang N et al (2001) Nemaline myopathy caused by mutations in the muscle α-skeletal-actin gene. Am J Hum Genet 68(6):1333–1343

    Article  PubMed  CAS  Google Scholar 

  33. Ilkovski B, Nowak KJ, Domazetovska A, Maxwell AL, Clement S et al (2004) Evidence for a dominant-negative effect in ACTA1 nemaline myopathy caused by abnormal folding, aggregation and altered polymerization of mutant actin isoforms. Hum Mol Genet 13(16):1727–1743

    Article  PubMed  CAS  Google Scholar 

  34. Jain RK, Jayawant S, Squier W, Muntoni F, Sewry CA et al (2012) Nemaline myopathy with stiffness and hypertonia associated with an ACTA1 mutation. Neurol 78(14):1100–1103

    Article  CAS  Google Scholar 

  35. Jungbluth H, Sewry CA, Brown SC, Nowak KJ, Laing NG et al (2001) Mild phenotype of nemaline myopathy with sleep hypoventilation due to mutation in the skeletal muscle alpha-actin (ACTA1) gene. Neuromuscular Disord 11:35–40

    Article  CAS  Google Scholar 

  36. Kaindl AM, Ruschendorf F, Krause S, Goebel HH, Koehler K et al (2004) Missense mutations of ACTA1 cause dominant congenital myopathy with cores. J Med Genet 41(11):842–848

    Article  PubMed  CAS  Google Scholar 

  37. Kalita D (1989) Nonprogressive nemaline myopathy. J Orthomolec Med 4:70–74

    Google Scholar 

  38. Karpati G, Carpenter S (1992) Skeletal muscle in neuromuscular diseases. In: Rowland LP, DiMauro S (eds) Myopathies—handbook of clinical neurology, vol 18(62). Elsevier Science, Amsterdam, pp 1–48

    Google Scholar 

  39. Laing NG (1995) Inherited disorders of contractile proteins in skeletal and cardiac muscle. Curr Opin Neurol 8:391–396

    Article  PubMed  CAS  Google Scholar 

  40. Laing NG, Clarke NF, Dye DE, Liyanage K, Walker KR et al (2004) Actin mutations are one cause of congenital fibre type disproportion. Ann Neurol 56(5):689–694

    Article  PubMed  CAS  Google Scholar 

  41. Laing NG, Dye DE, Wallgren-Pettersson C, Richard G, Monnier N et al (2009) Mutations and polymorphisms of the skeletal muscle alpha-actin gene (ACTA1). Hum Mutat 30(9):1267–1277

    Article  PubMed  CAS  Google Scholar 

  42. Laing NG, Wilton SD, Akkari PA, Dorosz S, Boundy K et al (1995) A mutation in the α-tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy. Nat Genet 9:75–79

    Article  PubMed  CAS  Google Scholar 

  43. Lake BD, Wilson J (1975) Zebra body myopathy. Clinical, histochemical and ultrastructural studies. J Neurol Sci 24(4):437–446

    Article  PubMed  CAS  Google Scholar 

  44. Lehtokari VL, Ceuterick-de Groote C, de Jonghe P, Marttila M, Laing NG et al (2007) Cap disease caused by heterozygous deletion of the beta-tropomyosin gene TPM2. Neuromuscular Disord 17:433–442

    Article  Google Scholar 

  45. Lindqvist J, Penisson-Besnier I, Iwamoto H, Li M, Yagi N et al (2012) A myopathy-related actin mutation increases contractile function. Acta Neuropathol 123(5):739–746

    Article  PubMed  CAS  Google Scholar 

  46. Nguyen MA, Joya JE, Kee AJ, Domazetovska A, Yang N et al (2011) Hypertrophy and dietary tyrosine ameliorate the phenotypes of a mouse model of severe nemaline myopathy. Brain 134(12):3516–3529

    Article  PubMed  Google Scholar 

  47. Nonaka I, Nakamura Y, Tojo M, Sugita H, Ishikawa T et al (1983) Congenital myopathy without specific features (minimal change myopathy). Neuropediatrics 14(4):237–241

    Article  PubMed  CAS  Google Scholar 

  48. Nowak KJ, Ravenscroft G, Jackaman C, Filipovska A, Davies SM et al (2009) Rescue of skeletal muscle alpha-actin-null mice by cardiac (fetal) alpha-actin. J Cell Biol 185(5):903–915

    Article  PubMed  CAS  Google Scholar 

  49. Nowak KJ, Sewry CA, Navarro C, Squier W, Reina C et al (2007) Nemaline myopathy caused by absence of alpha-skeletal muscle actin. Ann Neurol 61(2):175–184

    Article  PubMed  CAS  Google Scholar 

  50. Nowak KJ, Wattanasirichaigoon D, Goebel HH, Wilce M, Pelin K et al (1999) Mutations in the skeletal muscle alpha-actin gene in patients with actin myopathy and nemaline myopathy. Nat Genet 23(2):208–212

    Article  PubMed  CAS  Google Scholar 

  51. Ohlsson M, Fidzianska A, Tajsharghi H, Oldfors A (2009) TPM3 mutation in one of the original cases of cap disease. Neurology 72(22):1961–1963

    Article  PubMed  Google Scholar 

  52. Ravenscroft G, Colley SM, Walker KR, Clement S, Bringans S et al (2008) Expression of cardiac alpha-actin spares extraocular muscles in skeletal muscle alpha-actin diseases—quantification of striated alpha-actins by MRM-mass spectrometry. Neuromuscular Disord 18(12):953–958

    Article  Google Scholar 

  53. Ravenscroft G, Jackaman C, Bringans S, Papadimitriou JM, Griffiths LM et al (2011) Mouse models of dominant ACTA1 disease recapitulate human disease and provide insight into therapies. Brain 134(4):1101–1115

    Article  PubMed  Google Scholar 

  54. Ravenscroft G, Jackaman C, Sewry CA, McNamara E, Squire SE et al (2011) Actin nemaline myopathy mouse reproduces disease, suggests other actin disease phenotypes and provides cautionary note on muscle transgene expression. PLoS One 6(12):e28699

    Article  PubMed  CAS  Google Scholar 

  55. Razzaq A, Schmitz S, Veigel C, Molloy JE, Geeves MA et al (1999) Actin residue glu(93) is identified as an amino acid affecting myosin binding. J Biol Chem 274(40):28321–28328

    Article  PubMed  CAS  Google Scholar 

  56. Reyes MG, Goldbarg H, Fresco K, Bouffard A (1987) Zebra body myopathy: a second case of ultrastructurally distinct congenital myopathy. J Child Neurol 2(4):307–310

    Article  PubMed  CAS  Google Scholar 

  57. Rubenstein PA, Martin DJ (1983) NH2-terminal processing of Drosophila melanogaster actin. Sequential removal of two amino acids. J Biol Chem 258(18):11354–11360

    PubMed  CAS  Google Scholar 

  58. Russell AJ, Hartman JJ, Hinken AC, Muci AR, Kawas R et al (2012) Activation of fast skeletal muscle troponin as a potential therapeutic approach for treating neuromuscular diseases. Nat Med 18(3):452–455

    Article  PubMed  CAS  Google Scholar 

  59. Ryan MM, Sy C, Rudge S, Ellaway C, Ketteridge D et al (2008) Dietary l-tyrosine supplementation in nemaline myopathy. J Child Neurol 23(6):609–613

    Article  PubMed  Google Scholar 

  60. Saito Y, Komaki H, Hattori A, Takeuchi F, Sasaki M et al (2011) Extramuscular manifestations in children with severe congenital myopathy due to ACTA1 gene mutations. Neuromuscular Disord 21(7):489–493

    Article  Google Scholar 

  61. Sanoudou D, Haslett JN, Kho AT, Guo S, Gazda HT et al (2003) Expression profiling reveals altered satellite cell numbers and glycolytic enzyme transcription in nemaline myopathy muscle. Proc Natl Acad Sci USA 100(8):4666–4671

    Article  PubMed  CAS  Google Scholar 

  62. Sarnat HB (1992) Vimentin and desmin in maturing skeletal muscle and developmental myopathies. Neurol 42(8):1616–1624

    Article  CAS  Google Scholar 

  63. Schnell C, Kan A, North KN (2000) ‘An artefact gone awry’: identification of the first case of nemaline myopathy by Dr R.D.K. Reye. Neuromuscular Disord 10(4–5):307–312

    Article  CAS  Google Scholar 

  64. Schroder JM, Durling H, Laing N (2004) Actin myopathy with nemaline bodies, intranuclear rods, and a heterozygous mutation in ACTA1 (Asp154Asn). Acta Neuropathol 108(3):250–256

    Article  PubMed  CAS  Google Scholar 

  65. Schroder R, Reimann J, Salmikangas P, Clemen CS, Hayashi YK et al (2003) Beyond LGMD1A: myotilin is a component of central core lesions and nemaline rods. Neuromuscular Disord 13(6):451–455

    Article  CAS  Google Scholar 

  66. Sewry CA, Holton J, Dick DJ, Jacques T, Muntoni F et al (2009) Zebra body myopathy resolved. Neuromuscular Disord 19:637–638

    Article  Google Scholar 

  67. Sewry CA, Jimenez-Mallebrera C, Muntoni F (2008) Congenital myopathies. Curr Opin Neurol 21(5):569–575

    Article  PubMed  Google Scholar 

  68. Sewry CA, Muller C, Davis M, Dwyer JS, Dove J et al (2002) The spectrum of pathology in central core disease. Neuromuscular Disord 12(10):930–938

    Article  CAS  Google Scholar 

  69. Sheterline P, Clayton J, Sparrow JC (1998) Actin. In: Protein Profiles, vol 1. Oxford University Press, Oxford

  70. Shy GM, Engel WK, Somers JE, Wanko T (1963) Nemaline myopathy: a new congenital myopathy. Brain 86:793–810

    Article  PubMed  CAS  Google Scholar 

  71. Sparrow JC, Nowak KJ, Durling HJ, Beggs AH, Wallgren-Pettersson C et al (2003) Muscle disease caused by mutations in the skeletal muscle alpha-actin gene (ACTA1). Neuromuscular Disord 13:519–531

    Article  Google Scholar 

  72. Sugita H, Masaki T, Ebashi S (1974) Staining of myofibrils with fluorescent antibody against the 10S component of the original alpha-actinin preparation. J Biochem 75(3):671–673

    PubMed  CAS  Google Scholar 

  73. Tajsharghi H, Ohlsson M, Lindberg C, Oldfors A (2007) Congenital myopathy with nemaline rods and cap structures caused by a mutation in the beta-tropomyosin gene (TPM2). Arch Neurol 64(9):1334–1338

    Article  PubMed  Google Scholar 

  74. Taylor A, Erba H, Muscat G, Kedes L (1988) Nucleotide sequence and expression of the human skeletal α-actin gene: evolution of functional regulatory domains. Genomics 3:323–336

    Article  PubMed  CAS  Google Scholar 

  75. Vandekerckhove J, Weber K (1978) At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J Mol Biol 126(4):783–802

    Article  PubMed  CAS  Google Scholar 

  76. Vandekerckhove J, Weber K (1984) Chordate muscle actins differ distinctly from invertebrate muscle actins. The evolution of the different vertebrate muscle actins. J Mol Biol 179(3):391–413

    Article  PubMed  CAS  Google Scholar 

  77. Vilquin JT, Catelain C, Vauchez K (2011) Cell therapy for muscular dystrophies: advances and challenges. Curr Opin Organ Transplant 16(6):640–649

    Article  PubMed  CAS  Google Scholar 

  78. Visegrady B, Machesky LM (2010) Myopathy-causing actin mutations promote defects in serum-response factor signalling. Biochem J 427(1):41–48

    Article  PubMed  CAS  Google Scholar 

  79. Voit T, Krogmann O, Lenard HG, Neuen-Jacob E, Wechsler W et al (1988) Emery-Dreifuss muscular dystrophy: disease spectrum and differential diagnosis. Neuropediatrics 19(2):62–71

    Article  PubMed  CAS  Google Scholar 

  80. Wallefeld W, Krause S, Nowak KJ, Dye D, Horvath R et al (2006) Severe nemaline myopathy caused by mutations of the stop codon of the skeletal muscle alpha actin gene (ACTA1). Neuromuscular Disord 16(9–10):541–547

    Article  Google Scholar 

  81. Wallgren-Pettersson C (1989) Congenital nemaline myopathy: a clinical follow-up study of twelve patients. J Neurol Sci 89:1–14

    Article  PubMed  CAS  Google Scholar 

  82. Wallgren-Pettersson C, Laing NG (2001) Report of the 83rd ENMC International Workshop: 4th Workshop on Nemaline Myopathy, 22–24 September 2000, Naarden, The Netherlands. Neuromuscular Disord 11(6–7):589–595

    Article  CAS  Google Scholar 

  83. Wallgren-Pettersson C, Laing NG (2010) Congenital myopathies. In: Karpati G, Hilton-Jones D, Bushby K, Griggs RC (eds) Disorders of voluntary muscle, 8th edn. Cambridge University Press, Cambridge, pp 282–298

    Google Scholar 

  84. Wallgren-Pettersson C, Sewry CA, Nowak KJ, Laing NG (2011) Nemaline myopathies. Semin Pediatr Neurol 18(4):230–238

    Article  PubMed  Google Scholar 

  85. Wang CH, Dowling JJ, North K, Schroth MK, Sejersen T et al (2012) Consensus statement on standard of care for congenital myopathies. J Child Neurol 27(3):363–382

    Article  PubMed  Google Scholar 

  86. Yamaguchi M, Robson RM, Stromer MH, Dahl DS, Oda T (1978) Actin filaments form the backbone of nemaline myopathy rods. Nature 271(5642):265–267

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

KJN was supported by Australian Research Council Future Fellowship FT100100734, GR by Australian National Health and Medical Research Council (NH&MRC) Early Career Fellowship APP1035955, and NGL by NH&MRC Principal Research Fellowship APP1002147.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristen J. Nowak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowak, K.J., Ravenscroft, G. & Laing, N.G. Skeletal muscle α-actin diseases (actinopathies): pathology and mechanisms. Acta Neuropathol 125, 19–32 (2013). https://doi.org/10.1007/s00401-012-1019-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-012-1019-z

Keywords

Navigation