Skip to main content
Log in

Mapping of atrial fibrillation: strategies to understand an enigmatic arrhythmia

Mapping des Vorhofflimmerns: Strategien zum besseren Verständnis einer rätselhaften Arrhythmie

  • Schwerpunkt
  • Published:
Herzschrittmachertherapie + Elektrophysiologie Aims and scope Submit manuscript

Abstract

The three-dimensional (3D) mapping of cardiac arrhythmias has evolved in recent years to an important and extremely useful tool, providing important insights into arrhythmia mechanisms and thus improving ablation success rates, especially in complex arrhythmias. In atrial fibrillation (AF), the most common but also one of the most complex cardiac arrhythmias, progress in mapping technology has been focusing on several aspects according to the type of AF.

In paroxysmal AF, important progress in the exact anatomic reconstruction of the main ablation target, i.e., the pulmonary veins (PV), has been achieved. Perhaps even more importantly, new insights into conduction patterns, such as deceleration at the PV ostia, spiral conduction more distally into the PV, and PV cross-talk have been detected and enable faster and more sustainable PV isolation.

In persistent AF, the basic understanding of ongoing AF is perhaps the electrophysiological challenge of the 21st century. Since AF is instable in its course, mapping tools that assess statistically returning patterns or deal with so-called AF “rotors” or “drivers” have been developed, offering unique insights into possible AF mechanisms. Refined high-density bi-atrial voltage maps make it possible to further characterize the arrhythmogenic substrate and scar zones, while new and innovative mapping algorithms enable automated, fast, and reliable annotation of up to thousands of electrograms.

This improved understanding of AF mechanisms has led to the development of promising new ablation strategies, some of which are already in use in clinical routine.

Zusammenfassung

Das dreidimensionale (3-D) Mapping von Herzrhythmusstörungen hat sich in jüngeren Jahren zu einem bedeutsamen und äußerst nützlichen Verfahren entwickelt. Es bietet wichtige Einblicke in die Mechanismen von Arrhythmien und erhöht so die Erfolgsraten der Ablation, insbesondere bei komplexen Arrhythmien. Beim Vorhofflimmern (AF), der häufigsten, aber auch einer der komplexesten Arrhythmien, konzentriert sich der Fortschritt in der Mapping-Technik in Abhängigkeit vom AF-Typ auf mehrere Aspekte.

Bei paroxysmalem AF wurden erhebliche Verbesserungen in der genauen anatomischen Darstellung des Hauptablationsziels, genauer der Pulmonalvenen (PV), erreicht. Vielleicht von noch größerer Bedeutung sind die neuen Einblicke in Leitungsphänomene wie die Leitungsverzögerung an den PV-Ostien, die spiralförmige Leitung weiter distal in die PV und den „PV cross-talk“, was eine schnellere und gleichzeitig nachhaltigere PV-Isolation ermöglicht.

Die wesentliche elektrophysiologische Herausforderung des 21. Jahrhunderts besteht vielleicht darin, die Abläufe bei persistierendem AF grundlegend zu entschlüsseln. Da der Verlauf des AF unbeständig ist, wurden Mapping-Instrumente entwickelt, mit denen statistisch wiederkehrende Muster geprüft und sogenannte AF-Rotoren bzw. -Driver untersucht werden. Die Instrumente bieten einzigartige Einblicke in mögliche AF-Mechanismen. Detaillierte „voltage maps“ beider Vorhöfe ermöglichen eine genauere Beschreibung des arrhythmogenen Substrats und der Narbenbereiche, während neue, innovative Mapping-Algorithmen die schnelle und zuverlässige automatische Annotation Tausender Elektrogramme erlauben.

Das verbesserte Verständnis der AF-Mechanismen hat die Entwicklung vielversprechender neuer Ablationsstrategien ermöglicht, die zum Teil auch schon Eingang in die klinische Praxis gefunden haben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Haissaguerre M, Jais P, Shah DC et al (1998) Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 339:59–66

    Article  Google Scholar 

  2. Calkins H, Hindricks G, Cappato R et al (2018) 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Europace 20(1):e1–e160

    Article  PubMed  Google Scholar 

  3. Bourier F, Fahrig R, Wang P et al (2014) Accuracy assessment of catheter guidance technology in electrophysiology procedures. J Cardiovasc Electrophysiol 25(1):74–83

    Article  PubMed  Google Scholar 

  4. Phlips T, Taghji P, El Haddad M, Wolf M, Knecht S, Vandekerckhove Y, Tavernier R, Duytschaever M (2018) Improving procedural and one-year outcome after contact force-guided pulmonary vein isolation: the role of interlesion distance, ablation index, and contact force variability in the ‘CLOSE’-protocol. Europace. https://doi.org/10.1093/europace/eux376

    Article  PubMed  Google Scholar 

  5. Dong JUN, Dickfeld T, Dalal D, Cheema A, Vasamreddy CR, Henrikson CA (2006) Initial experience in the use of integrated electroanatomic mapping with three-dimensional MR/CT images to guide catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol 17(5):459–466

    Article  PubMed  Google Scholar 

  6. Christoph M, Wunderlich C, Moebius S, Forkmann M, Sitzy J, Salmas J (2015) Fluoroscopy integrated 3D mapping significantly reduces radiation exposure during ablation for a wide spectrum of cardiac arrhythmias. Europace 17(6):928–937

    Article  PubMed  Google Scholar 

  7. Kistler PM, Rajappan K, Harris S, Earley MJ, Richmond L, Sporton SC, Schilling RJ (2008) The impact of image integration on catheter ablation of atrial fibrillation using electroanatomic mapping: a prospective randomized study. Eur Heart J 29(24):3029–3036

    Article  PubMed  Google Scholar 

  8. Huo Y, Christoph M, Forkmann M, Pohl M, Mayer J, Salmas J, Gaspar T (2015) Reduction of radiation exposure during atrial fibrillation ablation using a novel fluoroscopy image integrated 3‑dimensional electroanatomic mapping system: A prospective, randomized, single-blind, and controlled study. Heart Rhythm 12(9):1945–1955

    Article  PubMed  Google Scholar 

  9. Bourier F, Reents T, Ammar-Busch S, Buiatti A, Grebmer C, Telishevska M, Kolb C, Deisenhofer I, Hessling G (2015) Sensor-based electromagnetic navigation (Mediguide®): how accurate is it? A phantom model study. J Cardiovasc Electrophysiol 26(10):1140–1145

    Article  PubMed  Google Scholar 

  10. Segerson NM, Lynch B, Mozes J, Marks MM, Noonan DK, Gordon D, Jais P, Daccarett M (2018) High-density mapping and ablation of concealed low-voltage activity within pulmonary vein antra results in improved freedom from atrial fibrillation compared to pulmonary vein isolation alone. Heart Rhythm. https://doi.org/10.1016/j.hrthm.2018.04.035

    Article  PubMed  Google Scholar 

  11. Wang X, Li Z, Mao J, He B (2017) Electrophysiological features and catheter ablation of symptomatic frequent premature atrial contractions. Europace 19(9):1535–1541

    Article  PubMed  Google Scholar 

  12. Chen J, Mandapati R, Berenfeld O, Skanes AC, Gray RA, Jalife J (2000) Dynamics of wavelets and their role in atrial fibrillation in the isolated sheep heart. Cardiovasc Res 48(2):220–232

    Article  CAS  PubMed  Google Scholar 

  13. Narayan SM, Krummen DE, Shivkumar K, Clopton P, Rappel WJ, Miller JM (2012) Treatment of atrial fibrillation by the ablation of localized sources: CONFIRM (Conventional Ablation for Atrial Fibrillation With or Without Focal Impulse and Rotor Modulation) trial. J Am Coll Cardiol 60(7):628–636

    Article  PubMed  PubMed Central  Google Scholar 

  14. Baykaner T, Rogers AJ, Meckler GL, Zaman J, Navara R, Rodrigo M, Alhusseini M, Kowalewski CAB, Viswanathan MN, Narayan SM, Clopton P, Wang PJ, Heidenreich PA (2018) Clinical implications of ablation of drivers for atrial fibrillation: a systematic review and meta-analysis. Circ Arrhythm Electrophysiol 11(5):e6119. https://doi.org/10.1161/CIRCEP.117.006119

    Article  PubMed  Google Scholar 

  15. Haissaguerre M, Hocini M, Denis A, Shah AJ, Komatsu Y, Yamashita S, Daly M, Amraoui S, Zellerhoff S, Picat MQ, Quotb A, Jesel L, Lim H, Ploux S, Bordachar P, Attuel G, Meillet V, Ritter P, Derval N, Sacher F, Bernus O, Cochet H, Jais P, Dubois R (2014) Driver domains in persistent atrial fibrillation. Circulation 130(7):530–538

    Article  PubMed  Google Scholar 

  16. Knecht S, Sohal M, Deisenhofer I, Albenque JP, Arentz T, Neumann T, Cauchemez B, Duytschaever M, Ramoul K, Verbeet T, Thorsten S, Jadidi A, Combes S, Tavernier R, Vandekerckhove Y, Ernst S, Packer D, Rostock T (2017) Multicentre evaluation of non-invasive biatrial mapping for persistent atrial fibrillation ablation: the AFACART study. Europace 19(8):1302–1309

    Article  PubMed  Google Scholar 

  17. Kottkamp H (2013) Human atrial fibrillation substrate: towards a specific fibrotic atrial cardiomyopathy. Eur Heart J 34(35):2731–2738. https://doi.org/10.1093/eurheartj/eht194

    Article  PubMed  Google Scholar 

  18. Schreiber D, Rieger A, Moser F, Kottkamp H (2017) Catheter ablation of atrial fibrillation with box isolation of fibrotic areas: lessons on fibrosis distribution and extent, clinical characteristics, and their impact on long-term outcome. J Cardiovasc Electrophysiol 28(9):971–983

    Article  PubMed  Google Scholar 

  19. Schotten U, Dobrev D, Platonov PG, Kottkamp H, Hindricks G (2016) Current controversies in determining the main mechanisms of atrial fibrillation. J Intern Med 279(5):428–438

    Article  CAS  PubMed  Google Scholar 

  20. Imai K, Sueda T, Orihashi K, Ishii O, Matsuura Y (2001) Electrophysiological analysis of chronic atrial fibrillation associated with mitral valve disease by using spectral analysis. Hiroshima J Med Sci 50(1):27–35

    CAS  PubMed  Google Scholar 

  21. Nademanee K, McKenzie J, Kosar E, Schwab M, Sunsaneewitayakul B, Vasavakul T, Khunnawat C, Ngarmukos T (2004) A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. J Am Coll Cardiol 43(11):2044–2053

    Article  PubMed  Google Scholar 

  22. Wu J, Estner H, Luik A, Ucer E, Reents T, Pflaumer A, Zrenner B, Hessling G, Deisenhofer I (2008) Automatic 3D mapping of complex fractionated atrial electrograms (CFAE) in patients with paroxysmal and persistent atrial fibrillation. J Cardiovasc Electrophysiol 19(9):897–903

    Article  PubMed  Google Scholar 

  23. Lau DH, Maesen B, Zeemering S, Kuklik P, van Hunnik A, Lankveld TA, Bidar E, Verheule S, Nijs J, Maessen J, Crijns H, Sanders P, Schotten U (2015) Indices of bipolar complex fractionated atrial electrograms correlate poorly with each other and atrial fibrillation substrate complexity. Heart Rhythm 12(7):1415–1423

    Article  PubMed  Google Scholar 

  24. Seitz J, Bars C, Théodore G, Beurtheret S, Lellouche N, Bremondy M, Ferracci A, Faure J, Penaranda G, Yamazaki M, Avula UM, Curel L, Siame S, Berenfeld O, Pisapia A, Kalifa J (2017) AF ablation guided by spatiotemporal electrogram dispersion without pulmonary vein isolation: a wholly patient-tailored approach. J Am Coll Cardiol 69(3):303–321

    Article  PubMed  PubMed Central  Google Scholar 

  25. Anter E, Tschabrunn CM, Josephson ME (2015) High-resolution mapping of scar-related atrial arrhythmias using smaller electrodes with closer interelectrode spacing. Circ Arrhythm Electrophysiol 8(3):537–545

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Deisenhofer MD.

Ethics declarations

Conflict of interest

I. Deisenhofer declares that she has no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deisenhofer, I. Mapping of atrial fibrillation: strategies to understand an enigmatic arrhythmia. Herzschr Elektrophys 29, 307–314 (2018). https://doi.org/10.1007/s00399-018-0586-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00399-018-0586-7

Keywords

Schlüsselwörter

Navigation