Advertisement

Synkopen und Ionenkanalerkrankungen

  • Johanna Müller-Leisse
  • Christos Zormpas
  • Thorben König
  • David Duncker
  • Christian Veltmann
Schwerpunkt
  • 263 Downloads

Zusammenfassung

Synkopen können die Erstmanifestation eines Brugada-Syndroms, Long-QT-Syndroms, Short-QT-Syndroms sowie einer katecholaminergen polymorphen Kammertachykardie (CPVT) sein. Diese seltenen Ionenkanalerkrankungen gehen mit einem erhöhten Risiko für den plötzlichen Herztod durch lebensgefährliche Tachyarrhythmien einher und bedürfen einer kardiologischen Anbindung und spezifischen Therapie. Aufgrund der hohen Prävalenz von Synkopen in der Allgemeinbevölkerung machen diese Kanalopathien nur einen Bruchteil der Synkopenursachen aus. Dennoch sollte an die Diagnose gedacht werden, insbesondere bei jungen, strukturell herzgesunden Patienten mit ungeklärter Synkopenursache, bei typisch-rhythmogener Synkopenanamnese, bei charakteristischen Auffälligkeiten im EKG sowie bei positiver Familienanamnese für Ionenkanalerkrankungen oder den plötzlichen Herztod. Auf der anderen Seite haben Synkopen eine große Bedeutung in der Risikostratifikation bei Patienten mit bereits bekannter Ionenkanalerkrankung. Da sie Ausdruck lebensgefährlicher Tachyarrhythmien sein können, zeigen Synkopen unter Umständen ein erhöhtes individuelles Risiko eines Patienten für den plötzlichen Herztod an. Der prädiktive Wert einer positiven Synkopenanamnese und mögliche therapeutische Konsequenzen unterscheiden sich bei den verschiedenen Ionenkanalerkrankungen. Aufgrund der Seltenheit der Erkrankungen sind die Erfahrungen und Evidenz diesbezüglich jedoch limitiert. Dieser Artikel bietet einen Überblick über typische Befunde, die im Rahmen der Synkopendiagnostik hinweisend auf eine Ionenkanalerkrankung sein können und zeigt den Stellenwert der Synkope in der Risikostratifikation bei Patienten mit bereits diagnostizierter Ionenkanalerkrankung auf.

Schlüsselwörter

Brugada-Syndrom Long-QT-Syndrom Short-QT-Syndrom Katecholaminerge polymorphe Kammertachykardie Plötzlicher Herztod 

Syncopes and channelopathies

Abstract

Syncope can be the first manifestation of cardiac channelopathies, namely Brugada syndrome, long QT syndrome, short QT syndrome and catecholaminergic polymorphic ventricular tachycardia (CPVT). Patients affected by these rare diseases are at increased risk for sudden cardiac death due to ventricular tachyarrhythmias and require specific therapy and follow-up. As syncope is common in the general population, only few cases are caused by an underlying channelopathy. Nevertheless, the diagnosis should be considered in young patients with structurally normal hearts, especially if the history of syncope is typical for an arrhythmogenic cause, in the presence of characteristic echocardiogram (ECG) patterns, and if there is a family history of channelopathies or sudden cardiac death. On the other hand, syncope plays an important role in the management of patients with diagnosed channelopathies, as they may indicate an increased risk for sudden cardiac death. The predictive value and consequences for treatment vary between the different channelopathies. However, data on this issue are scarce due to the low prevalence of these diseases. This review highlights typical findings in the medical history and diagnostic tests that may point towards an underlying channelopathy in patients with syncope. It also discusses the prognostic and therapeutic implications of a history of syncope in patients with known channelopathies.

Keywords

Brugada syndrome Long QT syndrome Short QT syndrome Catecholaminergic polymorphic ventricular tachycardia Sudden cardiac death 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

J. Müller-Leisse, C. Zormpas, T. König, D. Duncker und C. Veltmann geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Antzelevitch C, Yan G‑X, Ackerman MJ et al (2016) J‑wave syndromes expert consensus conference report_ emerging concepts and gaps in knowledge. J Arrhythm 32:315–339CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    De Ferrari GM, Dusi V, Spazzolini C et al (2015) Clinical management of catecholaminergic polymorphic ventricular tachycardia: the role of left cardiac sympathetic denervation. Circulation 131:2185–2193CrossRefPubMedGoogle Scholar
  3. 3.
    Delise P, Allocca G, Marras E et al (2011) Risk stratification in individuals with the Brugada type 1 ECG pattern without previous cardiac arrest: usefulness of a combined clinical and electrophysiologic approach. Eur Heart J 32:169–176CrossRefPubMedGoogle Scholar
  4. 4.
    Driscoll DJ, Jacobsen SJ, C‑BJ P, Wollan PC (1997) Syncope in children and adolescents. J Am Coll Cardiol 29:1039–1045CrossRefPubMedGoogle Scholar
  5. 5.
    Gaita F (2003) Short QT syndrome: a familial cause of sudden death. Circulation 108:965–970CrossRefPubMedGoogle Scholar
  6. 6.
    Giustetto C, Schimpf R, Mazzanti A et al (2011) Long-term follow-up of patients with short QT syndrome. J Am Coll Cardiol 58:587–595CrossRefPubMedGoogle Scholar
  7. 7.
    Goldenberg I, Moss AJ, Bradley J et al (2008) Long-QT syndrome after age 40. Circulation 117:2192–2201CrossRefPubMedGoogle Scholar
  8. 8.
    Hayashi M, Denjoy I, Extramiana F et al (2009) Incidence and risk factors of arrhythmic events in catecholaminergic polymorphic ventricular tachycardia. Circulation 119:2426–2434CrossRefPubMedGoogle Scholar
  9. 9.
    Hernandez-Ojeda J, Arbelo E, Borras R et al (2017) Patients with brugada syndrome and implanted cardioverter-defibrillators. J Am Coll Cardiol 70:1991–2002CrossRefPubMedGoogle Scholar
  10. 10.
    Hobbs JB (2006) Risk of aborted cardiac arrest or sudden cardiac death during adolescence in the long-QT syndrome. JAMA 296(10):1249–1254CrossRefPubMedGoogle Scholar
  11. 11.
    Mazzanti A, Maragna R, Vacanti G et al (2017) Hydroquinidine prevents life-threatening arrhythmic events in patients with short QT syndrome. J Am Coll Cardiol 70:3010–3015CrossRefPubMedGoogle Scholar
  12. 12.
    Miyake CY, Webster G, Czosek RJ et al (2013) Efficacy of implantable cardioverter defibrillators in young patients with catecholaminergic polymorphic ventricular tachycardia: success depends on substrate. Circ Arrhythm Electrophysiol 6:579–587CrossRefPubMedGoogle Scholar
  13. 13.
    Moss AJ, Zareba W, Hall WJ et al (2000) Effectiveness and limitations of blocker therapy in congenital long-QT syndrome. Circulation 101:616–623CrossRefPubMedGoogle Scholar
  14. 14.
    Nakazawa K, Sakurai T, Takagi A et al (2003) Autonomic imbalance as a property of symptomatic brugada syndrome. Circ J 67:511–514CrossRefPubMedGoogle Scholar
  15. 15.
    Nordkamp LRAO, Vink AS, Wilde AAM et al (2015) Syncope in brugada syndrome_ prevalence, clinical significance, and clues from history taking to distinguish arrhythmic from nonarrhythmic causes. Heart Rhythm 12(2):367–375.  https://doi.org/10.1016/j.hrthm.2014.10.014 CrossRefGoogle Scholar
  16. 16.
    Priori SG (2004) Association of long QT syndrome loci and cardiac events among patients treated with β‑blockers. JAMA 292:1341–1344CrossRefPubMedGoogle Scholar
  17. 17.
    Priori SG, Blomström-Lundqvist C, Mazzanti A et al (2015) 2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J 36:2793–2867CrossRefPubMedGoogle Scholar
  18. 18.
    Priori SG, Wilde AA, Horie M et al (2013) HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromesexpert consensus statement on inherited primary arrhythmia syndromes. Heart Rhythm 10(12):1932–1963.  https://doi.org/10.1016/j.hrthm.2013.05.014 CrossRefPubMedGoogle Scholar
  19. 19.
    Probst V, Veltmann C, Eckardt L et al (2010) Long-term prognosis of patients diagnosed with brugada syndrome: results from the FINGER brugada syndrome registry. Circulation 121:635–643CrossRefPubMedGoogle Scholar
  20. 20.
    Roston TM, Vinocur JM, Maginot KR et al (2015) Catecholaminergic polymorphic ventricular tachycardia in children. Circ Arrhythm Electrophysiol 8:633–642CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sacher F, Arsac F, Wilton SB et al (2012) Syncope in brugada syndrome patients: prevalence, characteristics, and outcome. Heart Rhythm 9(8):1272–1279.  https://doi.org/10.1016/j.hrthm.2012.04.013 CrossRefPubMedGoogle Scholar
  22. 22.
    Schimpf R, Wolpert C, Bianchi F et al (2003) Congenital short QT syndrome and Implantable cardioverter defibrillator treatment:. Inherent risk for inappropriate shock delivery. J Cardiovasc Electrophysiol 14:1273–1277CrossRefPubMedGoogle Scholar
  23. 23.
    Schwartz PJ, Crotti L (2011) QTc behavior during exercise and genetic testing for the long-QT syndrome. Circulation 124:2181–2184CrossRefPubMedGoogle Scholar
  24. 24.
    Sieira J, Conte G, Ciconte G et al (2017) A score model to predict risk of events in patients with brugada syndrome. Eur Heart J 38:1756–1763CrossRefPubMedGoogle Scholar
  25. 25.
    Soteriades ES, Evans JC, Larson MG (2003) Incidence and prognosis of syncope. ACC Curr J Rev 12:74CrossRefGoogle Scholar
  26. 26.
    Take Y, Morita H, Toh N et al (2012) Identification of high-risk syncope related to ventricular fibrillation in patients with brugada syndrome. Heart Rhythm 9(5):752–759.  https://doi.org/10.1016/j.hrthm.2011.11.045 CrossRefPubMedGoogle Scholar
  27. 27.
    Veltmann C, Kuschyk J, Schimpf R et al (2009) Prevention of inappropriate ICD shocks in patients with brugada syndrome. Clin Res Cardiol 99:37–44CrossRefPubMedGoogle Scholar
  28. 28.
    Veltmann C, Papavassiliu T, Konrad T et al (2012) Insights into the location of type I ECG in patients with brugada syndrome: correlation of ECG and cardiovascular magnetic resonance imaging. Heart Rhythm 9:414–421CrossRefPubMedGoogle Scholar
  29. 29.
    Veltmann C, Wolpert C, Sacher F et al (2009) Response to intravenous ajmaline: a retrospective analysis of 677 ajmaline challenges. Europace 11:1345–1352CrossRefPubMedGoogle Scholar
  30. 30.
    Watanabe H, van der Werf C, Roses-Noguer F et al (2013) Effects of flecainide on exercise-induced ventricular arrhythmias and recurrences in genotype-negative patients with catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm 10:542–547CrossRefPubMedGoogle Scholar
  31. 31.
    van der Werf C, Zwinderman AH, Wilde AAM (2012) Therapeutic approach for patients with catecholaminergic polymorphic ventricular tachycardia: state of the art and future developments. Europace 14:175–183CrossRefPubMedGoogle Scholar
  32. 32.
    Wilde AAM, Moss AJ, Kaufman ES et al (2016) Clinical aspects of type 3 long-QT syndromeclinical perspective. Circulation 134:872–882CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zareba W (1998) Influence of the genotype on the clinical course of the long-QT syndrome. N Eng J Med 399:960–965.  https://doi.org/10.1056/NEJM199810013391404 CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Johanna Müller-Leisse
    • 1
  • Christos Zormpas
    • 1
  • Thorben König
    • 1
  • David Duncker
    • 1
  • Christian Veltmann
    • 1
  1. 1.Rhythmologie und Elektrophysiologie, Klinik für Kardiologie und AngiologieMedizinische Hochschule HannoverHannoverDeutschland

Personalised recommendations