Advertisement

Chirurgische Entnahmetechnik der A. thoracica interna

Ein „blue chip“ der Herzchirurgie
Übersichten
  • 103 Downloads

Zusammenfassung

Hintergrund

Der Gebrauch einer oder beider Brustwandarterien (A. thoracica interna, „internal thoracic artery“ [ITA] oder A. mammaria interna, „internal mammary artery“ [IMA]) als Graft ist ein prognostisch entscheidender Faktor in der modernen chirurgischen Koronarrevaskularisierung. Sowohl die langfristige Überlebenswahrscheinlichkeit der Patienten als auch die langfristige Durchgängigkeit der Grafts sind ohne Zweifel besser, wenn die ITA eingesetzt werden.

Ziel der Arbeit

Diese Übersicht soll dem besseren Verständnis der verschiedenen Entnahmetechniken der ITA und deren kritischer Beurteilung dienen.

Material und Methoden

Literaturübersicht, eigenes und öffentlich verfügbares Videomaterial.

Diskussion

Die ITA werden entweder als Pedikel oder skeletiert entnommen. Beide Techniken haben Vor- und Nachteile; es besteht keine solide Evidenz darüber, ob sich im Langzeitverlauf die unterschiedlich entnommenen ITA unterscheiden. Im Kurzzeitverlauf, und insbesondere in Bezug auf die gefürchteten Wundheilungsstörungen der Sternotomie bzw. der Mediastinitis, scheint die skeletierte Technik von Vorteil zu sein. In jedem Fall und speziell im Hinblick auf die Validität weniger invasive Zugänge ist der Einsatz der ITA ein unverzichtbares Kernelement der chirurgischen Koronarrevaskularisierung.

Schlüsselwörter

Arteria mammaria interna Arteria thoracica interna Koronararterien-Bypass Prognose Robotergestützte chirurgische Verfahren Vaskuläres Grafting 

Surgical harvesting technique of the internal thoracic artery

A “blue chip” of cardiac surgery

Abstract

Background

The use of one or both internal thoracic or mammary arteries (ITA, IMA) as grafts is a prognostically significant factor in modern surgical coronary revascularization. Long-term patient survival, as well as long-term graft patency are without doubt better when ITAs are utilized.

Aim of the review

The purpose of this review is to deepen the understanding and enhance critical evaluation of all technical aspects of the surgical harvesting of ITAs.

Material and methods

Review of the relevant literature, own and publicly available surgical video material.

Discussion

There are two major techniques used for harvesting of the ITA: preparation as a pedicle or as a skeletonized artery. There are advantages and disadvantages to both. There is no solid evidence indicating a difference in long-term patency between the different methods for isolation of ITAs. In the short term and especially regarding dreaded sternal infections and/or mediastinitis, the skeletonized technique seems to be advantageous (especially in diabetic patients). In any case and especially regarding the less invasive approach, the use of the ITA is an indispensable element and the fulcrum of contemporary surgical coronary revascularization.

Keywords

Internal mammary artery Internal thoracic artery Prognosis Robotic surgical procedures Vascular grafting 

Notes

Danksagung

Herrn Dr. Riccardo Bonato wird für seine Unterstützung bei der Erstellung dieser Arbeit ausdrücklich gedankt.

Einhaltung ethischer Richtlinien

Interessenkonflikt

S. Demertzis gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Supplementary material

Video 1 Demonstration der skeletierten LITA-Präparation durch eine anterolaterale Minithorakotomie

Video 2 Robotisch-assistierte, skeletierte LITA-Präparation (Da Vinci Si, Fa. Intuitive Surgical, Sunnyvale, California, USA) bei geschlossenem Thorax

Video 3 Skeletierung der ITA (mediane Sternotomie)

Literatur

  1. 1.
    Ali IM, Lau P, Kinley CE, Sanalla A (1996) Opening the pleura during internal mammary artery harvesting: advantages and disadvantages. Can J Surg 39:42–45PubMedPubMedCentralGoogle Scholar
  2. 2.
    Balkhy HH, Nathan S, Arnsdorf SE, Krienbring DJ (2017) Right internal mammary artery use in 140 Robotic totally endoscopic coronary bypass cases: toward multiarterial grafting. Innovations (Phila) 12:9–14.  https://doi.org/10.1097/IMI.0000000000000341 CrossRefGoogle Scholar
  3. 3.
    Barner HB, Barnett MG (1994) Fifteen- to twenty-one-year angiographic assessment of internal thoracic artery as a bypass conduit. Ann Thorac Surg 57:1526–1528CrossRefPubMedGoogle Scholar
  4. 4.
    Berdajs D, Zünd G, Turina MI, Genoni M (2006) Blood supply of the sternum and its importance in internal thoracic artery harvesting. Ann Thorac Surg 81:2155–2159.  https://doi.org/10.1016/j.athoracsur.2006.01.020 CrossRefPubMedGoogle Scholar
  5. 5.
    Bonatti J, Ramahi J, Hasan F et al (2016) Long-term results after robotically assisted coronary bypass surgery. Ann Cardiothorac Surg 5:556–562.  https://doi.org/10.21037/acs.2016.11.04 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Boylan MJ, Lytle BW, Loop FD et al (1994) Surgical treatment of isolated left anterior descending coronary stenosis. Comparison of left internal mammary artery and venous autograft at 18 to 20 years of follow-up. J Thorac Cardiovasc Surg 107:657–662PubMedGoogle Scholar
  7. 7.
    Cao C, Indraratna P, Doyle M et al (2016) A systematic review on robotic coronary artery bypass graft surgery. Ann Cardiothorac Surg 5:530–543.  https://doi.org/10.21037/acs.2016.11.08 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Colombier S, Kessler U, Ferrari E et al (2013) Influence of deep sternal wound infection on long-term survival after cardiac surgery. Med Sci Monit 19:668–673.  https://doi.org/10.12659/MSM.889191 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cosgrove DM, Loop FD, Lytle BW et al (1985) Does mammary artery grafting increase surgical risk? Circulation 72:II170–II174CrossRefPubMedGoogle Scholar
  10. 10.
    Cosgrove DM, Lytle BW, Loop FD et al (1988) Does bilateral internal mammary artery grafting increase surgical risk? J Thorac Cardiovasc Surg 95:850–856PubMedGoogle Scholar
  11. 11.
    Dai C, Lu Z, Zhu H et al (2013) Bilateral internal mammary artery grafting and risk of sternal wound infection: evidence from observational studies. Ann Thorac Surg 95:1938–1945.  https://doi.org/10.1016/j.athoracsur.2012.12.038 CrossRefPubMedGoogle Scholar
  12. 12.
    Del Campo C (2003) Pedicled or skeletonized? A review of the internal thoracic artery graft. Tex Heart Inst J 30:170–175PubMedPubMedCentralGoogle Scholar
  13. 13.
    Demertzis SD, Laschke MW, Siclari FPA, Menger MD (2008) Non-robotic thoracoscopic internal mammary artery preparation in the pig. A training model. Interact Cardiovasc Thorac Surg 7:556–559.  https://doi.org/10.1510/icvts.2008.176636 CrossRefPubMedGoogle Scholar
  14. 14.
    Demikhov VP (1962) Experimental transplantation of vital organsGoogle Scholar
  15. 15.
    Favaloro RG (1968) Saphenous vein autograft replacement of severe segmental coronary artery occlusion: operative technique. Ann Thorac Surg 5:334–339CrossRefPubMedGoogle Scholar
  16. 16.
    Goetz RH, Rohman M, Haller JD et al (1961) Internal mammary-coronary artery anastomosis. A nonsuture method employing tantalum rings. J Thorac Cardiovasc Surg 41:378–386PubMedGoogle Scholar
  17. 17.
    Green GE (1970) Suture anastomosis of the internal mammary artery to the anterior descending coronary artery. In: I. Herzklappenersatz – II. Chirurgische Behandlung bei Durchblutungsstörungen des Herzens. Steinkopff, Heidelberg, S 153–159CrossRefGoogle Scholar
  18. 18.
    Green GE (1972) Internal Mammary Artery-to-Coronary Artery Anastomosis: Three-Year Experience with 165 Patients. Ann Thorac Surg 14:260–271.  https://doi.org/10.1016/S0003-4975(10)65228-9 Google Scholar
  19. 19.
    Green GE (1991) Sternotomy incision, mobilization, and routing of ITA grafts. In: Green GE, Singh RN, Sosa JA (Hrsg) Surgical revascularization of the heart. Igaku-Shoin Medical Publishers, New York, S 119–127Google Scholar
  20. 20.
    Grossi EA, Esposito R, Harris LJ et al (1991) Sternal wound infections and use of internal mammary artery grafts. J Thorac Cardiovasc Surg 102:342–346 (discussion 346–7)PubMedGoogle Scholar
  21. 21.
    Halkos ME, Liberman HA, Devireddy C et al (2014) Early clinical and angiographic outcomes after robotic-assisted coronary artery bypass surgery. J Thorac Cardiovasc Surg 147:179–185.  https://doi.org/10.1016/j.jtcvs.2013.09.010 CrossRefPubMedGoogle Scholar
  22. 22.
    Henriquez-Pino JA, Gomes WJ, Prates JC, Buffolo E (1997) Surgical anatomy of the internal thoracic artery. Ann Thorac Surg 64:1041–1045CrossRefPubMedGoogle Scholar
  23. 23.
    Hu X, Zhao Q (2011) Skeletonized internal thoracic artery harvest improves prognosis in high-risk population after coronary artery bypass surgery for good quality grafts. Ann Thorac Surg 92:48–58.  https://doi.org/10.1016/j.athoracsur.2011.03.067 CrossRefPubMedGoogle Scholar
  24. 24.
    Keeley SB (1987) The skeletonized internal mammary artery. Ann Thorac Surg 44:324–325.  https://doi.org/10.1016/S0003-4975(10)62088-7 CrossRefPubMedGoogle Scholar
  25. 25.
    Kolessov VI (1967) Mammary artery-coronary artery anastomosis as method of treatment for angina pectoris. J Thorac Cardiovasc Surg 54:535–544PubMedGoogle Scholar
  26. 26.
    Loop FD, Lytle BW, Cosgrove DM et al (1986) Influence of the internal-mammary-artery graft on 10-year survival and other cardiac events. N Engl J Med 314:1–6.  https://doi.org/10.1056/NEJM198601023140101 CrossRefPubMedGoogle Scholar
  27. 27.
    Lytle BW, Blackstone EH, Sabik JF et al (2004) The effect of bilateral internal thoracic artery grafting on survival during 20 postoperative years. Ann Thorac Surg 78:2005–2012.  https://doi.org/10.1016/j.athoracsur.2004.05.070 (discussion 2012–4)CrossRefPubMedGoogle Scholar
  28. 28.
    Mannacio V, Di Tommaso L, De Amicis V et al (2011) Randomized flow capacity comparison of skeletonized and pedicled left internal mammary artery. Ann Thorac Surg 91:24–30.  https://doi.org/10.1016/j.athoracsur.2010.06.131 CrossRefPubMedGoogle Scholar
  29. 29.
    Marti MC, Bouchardy B, Cox JN (1971) Aorto-coronary by-pass with autogenous saphenous vein grafts: histopathological aspects. Virchows Arch A Pathol Pathol Anat 352:255–266CrossRefPubMedGoogle Scholar
  30. 30.
    Matsa M, Paz Y, Gurevitch J et al (2001) Bilateral skeletonized internal thoracic artery grafts in patients with diabetes mellitus. J Thorac Cardiovasc Surg 121:668–674.  https://doi.org/10.1067/mtc.2001.112824 CrossRefPubMedGoogle Scholar
  31. 31.
    Mäyränpää M, Simpanen J, Hess MW et al (2004) Arterial endothelial denudation by intraluminal use of papaverine-NaCl solution in coronary bypass surgery. Eur J Cardiothorac Surg 25:560–566.  https://doi.org/10.1016/j.ejcts.2004.01.006 CrossRefPubMedGoogle Scholar
  32. 32.
    McGinn JT, Usman S, Lapierre H et al (2009) Minimally invasive coronary artery bypass grafting: dual-center experience in 450 consecutive patients. Circulation 120:S78–S84.  https://doi.org/10.1161/CIRCULATIONAHA.108.840041 CrossRefPubMedGoogle Scholar
  33. 33.
    Murray G, Porcheron R, Hilario J, Roschlau W (1954) Anastomosis of systemic artery to the coronary. Can Med Assoc J 71:594–597PubMedPubMedCentralGoogle Scholar
  34. 34.
    Oehlinger A, Bonaros N, Schachner T et al (2007) Robotic endoscopic left internal mammary artery harvesting: what have we learned after 100 cases? Ann Thorac Surg 83:1030–1034.  https://doi.org/10.1016/j.athoracsur.2006.10.055 CrossRefPubMedGoogle Scholar
  35. 35.
    Ohtsuka T, Takamoto S, Endoh M et al (2000) Ultrasonic coagulator for video-assisted internal mammary artery harvest. Surg Endosc 14:82–85CrossRefPubMedGoogle Scholar
  36. 36.
    Pacifico AD, Sears NJ, Burgos C (1986) Harvesting, routing, and anastomosing the left internal mammary artery graft. Ann Thorac Surg 42:708–710.  https://doi.org/10.1016/S0003-4975(10)64618-8 CrossRefPubMedGoogle Scholar
  37. 37.
    Paliouras D, Rallis T, Gogakos A et al (2015) Surgical anatomy of the internal thoracic arteries and their branching pattern: a cadaveric study. Ann Transl Med 3:212.  https://doi.org/10.3978/j.issn.2305-5839.2015.09.03 PubMedPubMedCentralGoogle Scholar
  38. 38.
    Peterson MD, Borger MA, Rao V et al (2003) Skeletonization of bilateral internal thoracic artery grafts lowers the risk of sternal infection in patients with diabetes. J Thorac Cardiovasc Surg 126:1314–1319.  https://doi.org/10.1016/S0022-5223(03)00808-0 CrossRefPubMedGoogle Scholar
  39. 39.
    Pevni D, Mohr R, Lev-Run O et al (2003) Influence of bilateral skeletonized harvesting on occurrence of deep sternal wound infection in 1,000 consecutive patients undergoing bilateral internal thoracic artery grafting. Ann Surg 237:277–280.  https://doi.org/10.1097/01.SLA.0000048375.70111.30 PubMedPubMedCentralGoogle Scholar
  40. 40.
    Sabiston DC, Fauteux JP, Blalock A (1957) An experimental study of the fate of arterial implants in the left ventricular myocardium; with a comparison of similar implants in other organs. Ann Surg 145:927–38 (discussion – 938–42)CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Pompeu Barros de Oliveira Sá M, Ferraz PE, Escobar RR et al (2013) Skeletonized versus pedicled internal thoracic artery and risk of sternal wound infection after coronary bypass surgery: meta-analysis and meta-regression of 4817 patients. Interact Cardiovasc Thorac Surg 16:849–857.  https://doi.org/10.1093/icvts/ivt012 CrossRefGoogle Scholar
  42. 42.
    Seyfer AE, Shriver CD, Miller TR, Graeber GM (1988) Sternal blood flow after median sternotomy and mobilization of the internal mammary arteries. Surgery 104:899–904PubMedGoogle Scholar
  43. 43.
    Sivalingam S, Levine A, Dunning J (2005) What is the optimal vasodilator for preventing spasm in the left internal mammary artery during coronary arterial bypass grafting? Interact Cardiovasc Thorac Surg 4:365–371.  https://doi.org/10.1510/icvts.2005.111559 CrossRefPubMedGoogle Scholar
  44. 44.
    Sones FM, Shirey EK (1962) Cine coronary arteriography. Mod Concepts Cardiovasc Dis 31:735–738PubMedGoogle Scholar
  45. 45.
    Toumpoulis IK, Anagnostopoulos CE, Derose JJ, Swistel DG (2005) The impact of deep sternal wound infection on long-term survival after coronary artery bypass grafting. Chest 127:464–471.  https://doi.org/10.1378/chest.127.2.464 CrossRefPubMedGoogle Scholar
  46. 46.
    Vassiliades TA (2003) A unilateral approach to bilateral thoracoscopic internal mammary artery harvesting. Interact Cardiovasc Thorac Surg 2:87–90.  https://doi.org/10.1016/S1569-9293(02)00109-3 CrossRefPubMedGoogle Scholar
  47. 47.
    Vineberg AM (1946) Restoration of coronary circulation by anastomosis. Can Med Assoc J 55:117–119PubMedCentralGoogle Scholar
  48. 48.
    Wolf RK, Ohtsuka T, Flege JB (1998) Early results of thoracoscopic internal mammary artery harvest using an ultrasonic scalpel. Eur J Cardiothorac Surg 14(Suppl 1):S54–S57CrossRefPubMedGoogle Scholar
  49. 49.
  50. 50.
  51. 51.

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Abteilung HerzchirurgieCardiocentro TicinoLuganoSchweiz

Personalised recommendations