Skip to main content
Log in

Endogene myokardiale Regeneration

Suche nach Mechanismen und zukünftigen Therapieansätzen

Endogenous myocardial regeneration

Search for mechanisms and future therapeutic approaches

  • Stand der Wissenschaft
  • Published:
Zeitschrift für Herz-,Thorax- und Gefäßchirurgie Aims and scope

Zusammenfassung

Ischämische Herzerkrankungen zählen weltweit weiterhin zu den führenden Todesursachen. Akute und chronische Myokardischämien ziehen einen Verlust an funktionellem Myokard nach sich und sind mit weitreichenden strukturellen Umbauprozessen am verbleibenden Myokard assoziiert. Häufig entwickelt sich eine progrediente Herzinsuffizienz. Aus Ermangelung kurativer Therapieoptionen bei Vorliegen einer chronischen Herzinsuffizienz besteht, insbesondere aufgrund der limitierten Zahl transplantierbarer Spenderorgane, dringender Bedarf für alternative Behandlungsansätze. Vielversprechend erscheint das innovative therapeutische Konzept der zellbasierten myokardialen Regeneration, das zum Ziel hat, über eine Applikation oder eine Stimulation von Stamm- und Progenitorzellen verloren gegangene Herzmuskelzellen funktionell zu ersetzen bzw. die Formation neuer Gefäße im geschädigten Herzmuskel zu bewirken. Entgegen der früheren Lehrmeinung verfügt das adulte Herz über gewisse endogene Regenerationskapazitäten, wie sie bei niederen Vertebraten bereits seit Längerem bekannt sind. Intrinsische Regenerationsvorgänge werden durch die Proliferation präexistenter Kardiomyozyten und/oder residenter Stammzellen vermittelt; die hierfür verantwortlichen Mechanismen sind jedoch noch weitestgehend unverstanden. Transgene Tiermodelle eröffnen wichtige Erkenntnisse zum Verständnis dieser Prozesse und liefern möglicherweise entscheidende Hinweise für spezifische Therapieansätze. Dieser Beitrag fasst die wichtigsten aktuellen Erkenntnisse zum Thema endogener, kardialer Regenerationsvorgänge zusammen und gibt eine Übersicht über die Prinzipien des „lineage tracing“ sowie „fate mapping“ als molekularbiologische Methoden der Wahl bei der Aufklärung solcher u. U. therapeutisch beeinflussbarer Prozesse.

Abstract

Ischemic heart disease and its sequelae are still among the leading causes of death worldwide. Myocardial infarction causes a major loss of functional contractile myocardium and is subsequently associated with extensive structural remodeling of the remaining myocardium. Progressive congestive heart failure often ensues. In the absence of curative therapy options, especially due to the limited number of transplantable donor organs, alternative treatment strategies are urgently needed. The innovative therapeutic concept of cell-based myocardial regeneration aims to functionally replace lost myocardium by application or stimulation of stem and progenitor cells and to stimulate the formation of new blood vessels within damaged heart muscle. For many decades the adult mammalian heart has been considered a terminally differentiated organ without any intrinsic capacity for regeneration. Contrary to this past doctrine recent studies have demonstrated a limited capacity of the postnatal mammalian heart to undergo cardiomyocyte renewal. This process may be mediated by cardiomyocytes reentering the cell cycle and/or by resident progenitor cells; however, the cellular mechanisms for this endogenous regenerative capacity are still barely understood. Transgenic animal models offer important insights into the understanding of these processes and may provide important hints for the development of specific therapeutic approaches. This article gives an overview about the most important recent findings on the subject of endogenous cardiac regeneration along with a brief overview of the principles of the lineage tracing and fate mapping techniques as molecular biological methods of choice in the investigation of such potentially therapeutically modifiable processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Andersen DC, Ganesalingam S, Jensen CH, Sheikh SP (2014) Do neonatal mouse hearts regenerate following heart apex resection? Stem Cell Reports 2:406–413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Balsam LB, Wagers AJ, Christensen JL et al (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428:668–673

    Article  CAS  PubMed  Google Scholar 

  3. Becker RO, Chapin S, Sherry R (1974) Regeneration of the ventricular myocardium in amphibians. Nature 248:145–147

    Article  CAS  PubMed  Google Scholar 

  4. Bergmann O, Bhardwaj RD, Bernard S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Statistisches Bundesamt (2012) Gesundheitsberichtersattung des Bundes: Sterbefälle insgesamt 2012 nach den 10 häufigsten Todesursachen der International Statistical Classification of Diseases and Related Health Problems (ICD-10). homepage: http://www.gbe-bund.de)

  6. Ellison GM, Vicinanza C, Smith AJ et al (2013) Adult c-kit(pos) cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. Cell 154:827–842

    Article  CAS  PubMed  Google Scholar 

  7. Garbade J, Barten MJ, Bittner HB, Mohr FW (2013) Heart transplantation and left ventricular assist device therapy: two comparable options in end-stage heart failure? Clin Cardiol 36:378–382

    Article  PubMed  Google Scholar 

  8. Garbern JC, Lee RT (2013) Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell 12:689–698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103:1204–1219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Gonzalez-Rosa JM, Martin V, Peralta M et al (2011) Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development 138:1663–1674

    Article  CAS  PubMed  Google Scholar 

  11. Heusch G, Libby P, Gersh B et al (2014) Cardiovascular remodelling in coronary artery disease and heart failure. Lancet 383:1933–1943

    Article  PubMed  Google Scholar 

  12. Hsieh PC, Segers VF, Davis ME et al (2007) Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med 13:970–974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Jackson KA, Majka SM, Wang H et al (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107:1395–1402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Jopling C, Sleep E, Raya M et al (2010) Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464:606–609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Kajstura J, Gurusamy N, Ogorek B et al (2010) Myocyte turnover in the aging human heart. Circ Res 107:1374–1386

    Article  CAS  PubMed  Google Scholar 

  16. Kajstura J, Rota M, Cappetta D et al (2012) Cardiomyogenesis in the aging and failing human heart. Circulation 126:1869–1881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kikuchi K, Holdway JE, Werdich AA et al (2010) Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464:601–605

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kikuchi K, Poss KD (2012) Cardiac regenerative capacity and mechanisms. Annu Rev Cell Dev Biol 28:719–741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Laflamme MA, Murry CE (2011) Heart regeneration. Nature 473:326–335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Loffredo FS, Steinhauser ML, Gannon J, Lee RT (2011) Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell Stem Cell 8:389–398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Malliaras K, Zhang Y, Seinfeld J et al (2013) Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart. EMBO Mol Med 5:191–209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Mollova M, Bersell K, Walsh S et al (2013) Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci U S A 110:1446–1451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Murry CE, Soonpaa MH, Reinecke H et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668

    Article  CAS  PubMed  Google Scholar 

  24. Oberpriller JO, Oberpriller JC (1974) Response of the adult new ventricle to injury. J Exp Zool 187:249–253

    Article  CAS  PubMed  Google Scholar 

  25. Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  CAS  PubMed  Google Scholar 

  26. Porrello ER, Mahmoud AI, Simpson E et al (2011) Transient regenerative potential of the neonatal mouse heart. Science 331:1078–1080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298:2188–2190

    Article  CAS  PubMed  Google Scholar 

  28. Roger VL, Go AS, Lloyd-Jones DM et al (2012) Heart disease and stroke statistics – 2012 update: a report from the American Heart Association. Circulation 125:e2–e220

    Article  PubMed  Google Scholar 

  29. Senyo SE, Steinhauser ML, Pizzimenti CL et al (2013) Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493:433–436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Soonpaa MH, Rubart M, Field LJ (2013) Challenges measuring cardiomyocyte renewal. Biochim Biophys Acta 1833:799–803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Templin C, Luscher TF, Landmesser U (2010) Stem and progenitor cell-based therapy approaches: current developments on treatment of acute myocardial infarction and chronic ischemic cardiomyopathy. Herz 35:445–456

    Article  CAS  PubMed  Google Scholar 

  32. Berlo JH van, Kanisicak O, Maillet M et al (2014) c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature 509:337–341

    Article  PubMed Central  PubMed  Google Scholar 

  33. Wang J, Panakova D, Kikuchi K et al (2011) The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development 138:3421–3430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Wu SM, Fujiwara Y, Cibulsky SM et al (2006) Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell 127:1137–1150

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. M.-A. Deutsch, S. Doppler, H. Lahm, M. Dressen, R. Lange und M. Krane geben an, dass kein Interessenkonflikt besteht. Alle nationalen Richtlinien zur Haltung und zum Umgang mit Labortieren wurden eingehalten, und die notwendigen Zustimmungen der zuständigen Behörden liegen vor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-A. Deutsch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deutsch, MA., Doppler, S., Lahm, H. et al. Endogene myokardiale Regeneration. Z Herz- Thorax- Gefäßchir 29, 53–60 (2015). https://doi.org/10.1007/s00398-014-1119-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00398-014-1119-2

Schlüsselwörter

Keywords

Navigation