Skip to main content
Log in

Remodeling bei Vorhofflimmern

Neue Aspekte zur Medikamentenwirkung

The remodeling process in atrial fibrillation

New aspects of drug action

  • Stand der Wissenschaft
  • Published:
Zeitschrift für Herz-,Thorax- und Gefäßchirurgie Aims and scope

Zusammenfassung

Vorhofflimmern ist die häufigste Rhythmusstörung des menschlichen Herzens, gekennzeichnet durch eine hohe Chronifizierungstendenz und eine hohe Rückfallrate nach Konversion. Beides ist eng verbunden mit einem durch das Vorhofflimmern induzierten Umbauprozess (Remodeling), der auf der Zellebene insbesondere Änderungen der Dichte zahlreicher Ionenkanäle, auf Gewebeebene Änderungen der interzellulären Kommunikation und Fibrose einschließt.

Die interzelluläre Kommunikation wird durch Gap-junction-Kanäle aufrecht erhalten, die normalerweise im Bereich der Glanzstreifen zu finden sind und am Vorhof von den Proteinen Connexin 43 (Cx43) und Connexin 40 (Cx40) gebildet werden. Bei Vorhofflimmern kommt es zu einer Veränderung dieser beiden Connexine, die meist vermehrt exprimiert, vor allem aber auch weniger an den Zellpolen, sondern viel mehr an den Seiten der Zellen eingebaut werden. Diese Umverteilung geht funktionell mit einer erhöhten transversalen Leitungsgeschwindigkeit einher, was zusammen mit Inhomogenität und Fibrose die zahlreichen kleinen Reentry-Kreise strukturell fixiert und somit zur Chronifizierung beiträgt.

Metoprolol ist die erste Substanz, für die gezeigt werden konnte, dass sie in diesen Prozess eingreift, und die Lokalisationsveränderungen von Cx43, nicht aber Cx40, normalisiert. So führt Metoprolol zu einer teilweisen Normalisierung der transversalen Erregungsgeschwindigkeit.

Abstract

Atrial fibrillation is the most common arrhythmia in man and is characterized by not only a high tendency to become chronic but also has a high recurrence rate after conversion. Both are linked to a remodeling process induced by the atrial fibrillation itself, which at the cellular level includes changes in the density of various ion currents and on the tissue level changes in fibrosis and in intercellular communication. Intercellular communication is maintained by gap junction channels, which normally are found at the intercalated disks. In the atrium, these channels are made from the proteins connexin 43 (Cx43) and connexin 40 (Cx40). Atrial fibrillation leads to a change in these proteins, which are often expressed at a higher level and – most importantly – are less accentuated at the cell poles, but are incorporated more frequently at the lateral sides of the cells. The distribution change is functionally accompanied by an increase in the transverse conduction velocity, which together with inhomogeneities and fibrosis, stabilizes the multiple wavelets and contributes to the chronification of the arrhythmia. Metoprolol is the first drug to be shown that it affects this remodeling process and inhibits the changes regarding lateralization of Cx43, but not of Cx40, leading to a partial normalization of the transversal conduction velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Boldt A, Wetzel U, Weigl J et al (2003) Expression of angiotensin-II receptors in the human left and right atrial tissue in atrial fibrillation with and without underlying mitral valve disease. J Am Coll Cardiol 42:1785–1792

    Article  PubMed  CAS  Google Scholar 

  2. Boldt A, Wetzel U, Lauschke J et al (2004) Fibrosis in left atrial tissue of patients with atrial fibrillation with and without underlying mitral valve disease. Heart 90:400–405

    Article  PubMed  CAS  Google Scholar 

  3. Boldt A, Scholl A, Garbade J et al (2006) ACE-inhibitor treatment attenuates atrial structural remodeling in patients with lone chronic atrial fibrillation. Basic Res Cardiol 101(3):261–267

    Article  PubMed  CAS  Google Scholar 

  4. Brundel BJJM, Henning RH, Kampinga HH et al (2002) Molecular mechanisms of remodeling in human atrial fibrillation. Cardiovasc Res 54:315–324

    Article  PubMed  CAS  Google Scholar 

  5. Burstein B, Comtois P, Michael G et al (2009) Changes in connexin expression and the atrial fibrillation substarate in congestive heart failure. Circ Res 105:1213–1222

    Article  PubMed  CAS  Google Scholar 

  6. Christ T, Wettwer E, Voigt N et al (2008) Pathology-specific effects of the IKur/Ito/IK, ACh blocker AVE0118 on ion channels in human chronic atrial fibrillation. Br J Pharmacol 154:1619–1630

    Article  PubMed  CAS  Google Scholar 

  7. Cruciani V, Mikalsen SO (2007) Evolutionary selection pressure and family relationships among connexin genes. Biol Chem 388:253–264

    Article  PubMed  CAS  Google Scholar 

  8. Dhein S, Duerrschmidt N, Scholl A et al (2008) A new role for extracellular Ca2 + in gap junction remodeling: Studies in humans and rats. Naunyn Schmiedebergs Arch Pharmacol 377:125–138

    Article  PubMed  CAS  Google Scholar 

  9. Dhein S, Rothe S, Busch A et al (2011) Effects of metoprolol therapy on cardiac gap junction remodelling and conduction in human chronic atrial fibrillation. Br J Pharmacol doi:10.1111/j.1476-5381.2011.01460.x

    Google Scholar 

  10. Dhein S (1998) Gap junction channels in cardiovascular system: Pharmacological and physiological modulation. Trends Pharmacol Sci (TiPS) 19:229–241

    Article  Google Scholar 

  11. Dobrev D, Nattel S (2008) Calcium handling abnormalities in atrial fibrillation as a target for innovative therapeutics. J Cardiovasc Pharmacol 52:293–299

    Article  PubMed  CAS  Google Scholar 

  12. Duffy HS, Wit AL (2008) Is there a role for remodelled connexins in AF? No simple answers. J Mol Cell Cardiol 44:4–13

    Article  PubMed  CAS  Google Scholar 

  13. Dupont E, Ko Y, Rothery S et al (2001) The gap-junctional protein connexin 40 is elevated in patients susceptible to postoperative atrial fibrillation. Circulation 103:842–849

    PubMed  CAS  Google Scholar 

  14. Gaborit N, Steenman M, Lamirault G et al (2005) Human atrial ion channel and transporter subunit gene-expression remodelin associated with valvular heart disease and atrial fibrillation. Circulation 112:471–481

    Article  PubMed  Google Scholar 

  15. Go AS, Hylek EM, Phillips KA et al (2001) Prevalence of diagnosed atrial fibrillation in adults. National implications for rhythm management and stroke prevention: the AnTi-coagulation and Risk Factors In Atrial Fibrillation (ATRIA) Study. JAMA 285:2370–2375

    Article  PubMed  CAS  Google Scholar 

  16. Goette A, Arndt M, Roecken C et al (2000) Regulation of angiotensin II receptor subtypes during atrial fibrillation in humans. Circulation 101:2678–2681

    PubMed  CAS  Google Scholar 

  17. Greiser M, Lederer WJ, Schotten U (2011) Alterations of atrial Ca2 + handling as cause and consequence of atrial fibrillation. Cardiovasc Res 89:722–733

    Article  PubMed  CAS  Google Scholar 

  18. Hui Y, Junzhu C, Jianhua Z (2008) Gap junction and Na + -H + exchanger alternations in fibrillating and failing atrium. Int J Cardiol 128:147–149

    Article  PubMed  Google Scholar 

  19. Kirchhof P, Bax J, Blomstrom-Lundquist C et al (2009) Early and comprehensive management of atrial fibrillation: executive summary of the proceedings from the 2nd AFNET-EHRA consensus conference ‚research perspectives in AF’. Eur Heart J 30:2969c–2977c

    Article  Google Scholar 

  20. Kostin S, Klein G, Szalay Z et al (2002) Structural corelate of atrial fibrillation in human patients. Cardiovasc Res 54:361–379

    Article  PubMed  CAS  Google Scholar 

  21. Li DQ, Feng YB, Zhang HQ (2004) The relationship between gap junctional remodeling and atrial fibrillation in patients with rheumatic heart disease. Zhonghua Yi Xue Za Zhi 84:384–386

    PubMed  Google Scholar 

  22. Luo MH, Li YS, Yang KP (2007) Fibrosis of collagen I and remodeling of connexin 43 in atrial myocardium of patients with atrial fibrillation. Cardiology 107:248–253

    Article  PubMed  CAS  Google Scholar 

  23. Miyasaka Y, Barnes ME, Gersh BJ et al (2006) Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980–2000, and implications on the projections for future prevalence. Circulation 114:119–125

    Article  PubMed  Google Scholar 

  24. Nattel S, Maguy A, LeBouter S, Yeh YH (2007) Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev 87:425–456

    Article  PubMed  CAS  Google Scholar 

  25. Polontchouk L, Haefliger J-A, Ebelt B et al (2001) Effects of chronic atrial fibrillation on gap junction distribution in human and rat atria. J Am Coll Cardiol 38:883–891

    Article  PubMed  CAS  Google Scholar 

  26. Polontchouk L, Ebelt B, Jackels M, Dhein S (2002) MAP kinases mediate the effects of endothelin-1 and angiotensin-II on the cardiac connexin expression. FASEB J 16:87–89

    PubMed  CAS  Google Scholar 

  27. Röcken C, Peters B, Juenemann G et al (2002) Atrial amyloidosis. An arrhythmogenic substrate for persistent atrial fibrillation. Circulation 106:2091–2097

    Article  PubMed  Google Scholar 

  28. Rohr S (2004) Role of gap junctions in the propagation of the cardiac action potential. Cardiovasc Res 62:309–322

    Article  PubMed  CAS  Google Scholar 

  29. Rojas Gomez DM, Schulte JS, Mohr FW, Dhein S (2008) Alpha-1-adrenoceptor subtype selective regulation of connexin 43 expression in rat cardiomyocytes. Naunyn Schmiedebergs Arch Pharmacol 377:77–85

    Article  Google Scholar 

  30. Sakabe M, Fujiki A, Nishida K et al (2004) Enalapril prevents perpetuation of atrial fibrillation by suppressing atrial fibrosis and over-expression of connexin43 in a canine model of atrial pacing-induced left ventricular dysfunction. J Cardiovasc Pharmacol 43:851–859

    Article  PubMed  CAS  Google Scholar 

  31. Salameh A, Krautblatter S, Karl S et al (2009) The signal transduction cascade regulating the expression of the gap junction protein connexin43 by β-adrenoceptors. Br J Pharmacol 158:198–208

    Article  PubMed  CAS  Google Scholar 

  32. Salameh A, Blanke K, Dhein S, Janousek J (2010a) Cardiac gap junction channels are upregulated by metoprolol: an unexpected effect of beta-blockers. Pharmacology 85(4):203–210

    Article  PubMed  CAS  Google Scholar 

  33. Salameh A, Wustmann A, Karl S et al (2010b) Cyclic mechanical stretch induces cardiomyocyte orientation and polarization of the gap junction protein connexin43. Circ Res 106(10):1592–1602

    Article  PubMed  CAS  Google Scholar 

  34. Seidel T, Salameh A, Dhein S (2010) A simulation study of cellular hypertrophy and connexin lateralization in cardiac tissue. Biophys J 99:2821–2830

    Article  PubMed  CAS  Google Scholar 

  35. Söhl G, Willecke K (2004) Gap junctions and the connexion protein family. Cardiovasc Res 62:228–232

    Article  PubMed  Google Scholar 

  36. Wang TJ, Larson MG, Levy D et al (2003) Temporal relations of atrial fibrillation and congestive heart failure and their joint influence on mortality: the Framingham study. Circulation 107:2920–2925

    Article  PubMed  Google Scholar 

  37. Wetzel U, Boldt A, Lauschke J et al (2005) Expression of connexins 40 and 43 in human left atrium in atrial fibrillation of different aetiology. Heart 91:166–170

    Article  PubMed  CAS  Google Scholar 

  38. Yan H, Chen JZ, Zhu JH et al (2004) Expression of connexin in atrium of patients with atrial fibrillation and its signal transduction pathway. Zhonghua Yi Xue Za Zhi 84:209–213

    PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dhein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhein, S. Remodeling bei Vorhofflimmern. Z Herz- Thorax- Gefäßchir 25, 379–384 (2011). https://doi.org/10.1007/s00398-011-0879-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00398-011-0879-1

Schlüsselwörter

Keywords

Navigation