Anisotropic behaviour analysis of silicone/carbonyl iron particles magnetorheological elastomers

Abstract

We report the microscopic, magnetic and rheological properties of magnetorheological elastomers (MRE) with carbonyl iron magnetic particles (CIP) dispersed into silicone in the concentration range 5–30% volume content. The samples have been fabricated under the action of a magnetic field (anisotropic A-MRE) or without it (isotropic I-MRE). For the A-MRE samples and at low particle concentration, the anisotropy is evident in the microstructure and the magnetic properties. However and at high particle concentration, the microstructural and magnetic anisotropy is much less noticeable and makes difficult to distinguish between isotropic and anisotropic state. The rheological characterization shows changes in the storage modulus G when CIP content is from 5 to 30% volume and I-MRE (72% change) and A-MRE (70% change) character of the samples. However, this influence is remarkable in the loss modulus G with big changes when considering CIP content from 5 to 30% volume and I-MRE (114% change) and A-MRE (142% change). We have also determined that the anisotropic samples with high particle content present the maximum magnetorheological effect of about 31% at low frequency (1–2 Hz).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Agirre-Olabide I, Berasategui J, Elejabarrieta MJ, Bou-Ali MM (2014) Characterization of the linear viscoelastic region of magnetorheological elastomers. J Intell Mater Syst Struct 25(16):2074–2081

    CAS  Article  Google Scholar 

  2. Berasategi J, Gomez A, Bou-Ali MM, Gutiérrez J, Barandiarán JM, Beketov IV, Safronov AP, Kurlyandskaya GV (2018) Fe nanoparticles produced by electric explosion of wire for new generation of magneto-rheological fluids. Smart Mater Struct 27:045011 (8 pp.)

    Article  Google Scholar 

  3. Boczkowska A, Awietjan SF (2010) Tuning active magnetorheological elastomers for damping applications. Mater Sci Forum 636-637:766–771

    CAS  Article  Google Scholar 

  4. Carlson JD, Jolly MR (2000) MR fluid, foam and elastomer devices. Mechatronics 10(4):555–569

    Article  Google Scholar 

  5. Chen L, Gong XL, Jiang WQ, Yao JJ, Deng HX, Li WH (2007) Investigation on magnetorheological elastomers based on natural rubber. J Mat Sci 42:5483–5489

    CAS  Article  Google Scholar 

  6. Chen L, Gong X, Li W (2008) Effect of carbon black on the mechanical performances of magnetorheological elastomers. Polym Test 27(3):340–345

    CAS  Article  Google Scholar 

  7. Deng HX, Gong XL, Wang LH (2006) Development of an adaptive tuned vibration absorber with magnetorheological elastomer. Smart Mater Struct 15(5):N111–N116

    Article  Google Scholar 

  8. Gong XL, Zhang XZ, Zhang PQ (2005) Fabrication and characterization of isotropic magnetorheological elastomers. Polym Test 24(5):669–676

    CAS  Article  Google Scholar 

  9. Hiptmair F, Major Z, Haßlacher R, Hild S (2015) Design and application of permanent magnet flux sources for mechanical testing of magnetoactive elastomers at variable field directions. Rev Sci Instrum 86(8):085107 (9 pp.)

    CAS  Article  Google Scholar 

  10. Jolly MR, Carlson JD, Muñoz BC (1996) A model of the behaviour of magnetorheological materials. Smart Mater Struct 5:607–614

    CAS  Article  Google Scholar 

  11. Jones DIG (2001) Handbook of viscoelastic vibration damping. Wiley Ltd, Chichester

    Google Scholar 

  12. Ju B, Tang R, Zhang D, Yang B, Yu M, Liao C (2015) Temperature dependent dynamic mechanical properties of magnetorheological elastomers under magnetic field. J Magn Magn Mater 374:283–288

    CAS  Article  Google Scholar 

  13. Jung HS, Kwon SH, Choi HJ, Jung JH, Kim YG (2016) Magnetic carbonyl iron/natural rubber composite elastomer and its magnetorheology. Compos Struct 136:106–112

    Article  Google Scholar 

  14. Kallio M, Lindroos T, Aälto S, Järvinen E, Kärnä T, Meinander T (2007) Dynamic compression testing of a tunable spring element consisting of a magnetorheological elastomer. Smart Mater Struct 16:506–514

    CAS  Article  Google Scholar 

  15. Kramarenko EYu, Khokhlov AR, Stepanov GV, Vikulenkov AV, Selkov DA, Uspenski ES, Podvolotski AG, Chertovich AV (2011) Patent RF 2411404

  16. Li J, Gong X, Xu ZB, Jiang W (2008) The effect of pre-structure process on magnetorheological elastomer performance. Int J Mater Res 99(12):1358–1364

    CAS  Article  Google Scholar 

  17. Li WH, Zhou Y, Tian TF (2010) Viscoelastic properties of MR elastomers under harmonic loading. Rheol Acta 49:733–740

    CAS  Article  Google Scholar 

  18. Lokander M, Stenberg B (2003) Performance of isotropic magnetorheological rubber materials. Polym Test 22(3):245–251

    CAS  Article  Google Scholar 

  19. Lu X, Qiao X, Watanabe H, Gong X, Yang T, Li W, Sun K, Li M, Yang K, Xie H, Yin Q, Wang D, Chen X (2012) Mechanical and structural investigation of isotropic and anisotropic thermoplastic magnetorheological elastomer composites based on poly(styrene-bethylene-co-butylene-b-styrene) (SEBS). Rheol Acta 51:37–50

    CAS  Article  Google Scholar 

  20. Schubert G, Harrison P (2015) Large-strain behaviour of magneto-rheological elastomers tested under uniaxial compression and tension, and pure shear deformations. Polym Test 42:122–134

    CAS  Article  Google Scholar 

  21. Shen Y, Golnaraghi MF, Heppler GR (2004) Experimental research and modeling of magnetorheological elastomers. J Intell Mater Syst Struct 15:27–35

    Article  Google Scholar 

  22. Stoll A, Mayer M, Monkman GJ, Shamonin M (2014) Evaluation of highly compliant magneto-active elastomers with colossal magnetorheological response. J Appl Polym Sci 131:39793 (7 pp.)

    Article  Google Scholar 

  23. Varga Z, Filipcsei G, Zrinyi M (2005) Smart composites with controlled anisotropy. Polymer 46(18):7779–7787

    CAS  Article  Google Scholar 

  24. Zhou GY (2004) Complex shear modulus of a magnetorheological elastomer. Smart Mater Struct 13:1203–1210

    Article  Google Scholar 

  25. Zhou GY, Jiang ZJ (2004) Deformation in magnetorheological elastomer and elastomer–ferromagnet composite driven by a magnetic field. Smart Mater Struct 13:309–316

    Article  Google Scholar 

Download references

Funding

The authors received financial support from the Basque Government under the ACTIMAT (KK-2018/00099, Elkartek program) and FLUMAN (PI_2017_1_0043 and PI_2017_1_0055, PIBA program) projects, and University Basque Research Groups Funding (IT1245-19).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jon Gutierrez.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

María San Sebastián on leave from BCMaterials

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Berasategi, J., Salazar, D., Gomez, A. et al. Anisotropic behaviour analysis of silicone/carbonyl iron particles magnetorheological elastomers. Rheol Acta 59, 469–476 (2020). https://doi.org/10.1007/s00397-020-01218-4

Download citation

Keywords

  • Magnetorheological elastomers
  • Microstructure
  • Magnetic characterization
  • Anisotropy
  • Rheology