Skip to main content
Log in

A new ultrasonic rheometer for space exploration in lander missions

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Viscosity is a fundamental characteristic of liquid and viscoelastic materials. Viscosity measurements can give an insight in the mechanics and chemistry of biotic and geophysical samples; therefore, lander exploration of extra-terrestrial planets will benefit from an integrated viscometer. However, conventional viscometers are unsuitable for space missions. A novel miniaturised ultrasonic sensor is here presented as a rheometer for the in situ analysis of viscoelastic samples in extra-terrestrial lander missions. The measurement accuracy of the ultrasonic sensor was compared against a conventional viscometer for the measurement of aqueous solutions of L- and D-amino acids, with concentrations ranging from 1 to 10% (mass/volume). The instrument measured the viscosity of the aqueous solutions with a precision of 10% in a frequency range of 1.8 to 13.5 MHz. The instrument was further used to measure the viscosity of solutions of D-serine and L-serine 10% in water at sub-zero temperatures. Their viscosity was measured at the freezing point, demonstrating that this new sensor can provide innovative means for the study of ice rheology in situ. The compact dimensions of this sensor and the high precision of the measurements make it an ideal tool for in situ mechanical characterisation of biotic and geological samples in alien worlds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

η :

Shear viscosity (mPas)

k m :

Matching layer wavenumber (1/m)

t m :

Matching layer thickness (m)

z l :

Fluid impedance (Rayl)

z m :

Matching layer impedance (Rayl)

z s :

Solid impedance (Rayl)

ρ l :

Fluid density (kg/m3)

f :

Frequency (Hz)

Q :

Quality factor

QCM:

Quartz crystal microbalance

R :

Reflection coefficient

δ :

Penetration depth (nm)

ω :

Rotational frequency (rad/s)

Arg:

Arginine

Ser:

Serine

Ala:

Alanine

Try:

Tryptophan

Gly:

Glycine

Leu:

Leucine

Val:

Valine

References

  • Boldock L (2017) The influence of stent geometry on haemodynamics and endothelialisation (Doctoral dissertation, University of Sheffield)

  • Brekhovskikh L (2012) Waves in layered media, vol 16. Elsevier

  • Brophy BH, Singh S, Chevrier VF (2015) Effect of sediment concentration on titan fluid dynamics. In: Lunar and planetary science conference, vol 46, p 1734

  • Buckin V, Kudryashov E (2001) Ultrasonic shear wave rheology of weak particle gels. Adv Colloid Interf Sci 89:401–422

    Article  Google Scholar 

  • Dhar L, Rogers JA, Nelson KA, Trusell F (1995) Moduli determination in polyimide film bilayer systems: prospects for depth profiling using impulsive stimulated thermal scattering. J Appl Phys 77(9):4431–4444

    Article  Google Scholar 

  • Europa Lander Study 2016 Report: Europa Lander Mission. JPL D-97667

  • Fortes AD (2000) Exobiological implications of a possible ammonia–water ocean inside titan. Icarus 146(2):444–452

    Article  Google Scholar 

  • Franco EE, Adamowski JC, Higuti RT, Buiochi F (2008) Viscosity measurement of Newtonian liquids using the complex reflection coefficient. IEEE Trans Ultrason Ferroelectr Freq Control 55(10):2247–2253

    Article  Google Scholar 

  • Gokhale VJ, Sui Y, Rais-Zadeh M (2012) Novel uncooled detector based on gallium nitride micromechanical resonators. In: Infrared technology and applications XXXVIII, vol 8353. International Society for Optics and Photonics, p 835319

  • Haefeli R (1952) Observations on the quasi-viscous behaviour of ice in a tunnel in the Z’Mutt glacier. J Glaciol 2(12):94–99

    Article  Google Scholar 

  • Harrison G, Barlow AJ (1981) 3. Dynamic viscosity measurement. In: Methods in experimental physics, vol. 19, pp 137-178. Academic Press

  • Hergenrother PM (2003) The use, design, synthesis, and properties of high performance/high temperature polymers: an overview. High Performa Polym 15(1):3–45

    Article  Google Scholar 

  • Huang K, Szlufarska I (2012) Friction and slip at the solid/liquid interface in vibrational systems. Langmuir 28(50):17302–17312

    Article  Google Scholar 

  • Jones EG, Lineweaver CH (2012) Using the phase diagram of liquid water to search for life. Aust J Earth Sci 59(2):253–262

    Article  Google Scholar 

  • Kazys R, Rekuviene R, Sliteris R, Mazeika L, Zukauskas E (2015) Ultrasonic technique for monitoring of liquid density variations. Rev Sci Instrum 86(1):015003

    Article  Google Scholar 

  • Kessler D, Roth PJ, Theato P (2009) Reactive surface coatings based on polysilsesquioxanes: controlled functionalization for specific protein immobilization. Langmuir 25(17):10068–10076

    Article  Google Scholar 

  • Kinsler LE, Frey AR, Coppens AB, Sanders JV (1999) Fundamentals of acoustics. Fundamentals of acoustics, 4th ed. In: Kinsler LE, Frey AR, Coppens AB, Sanders JV. Wiley-VCH, p 560. ISBN 0-471-84789-5

  • Kumar Kannam S, Todd BD, Hansen JS, Daivis PJ (2012) Slip length of water on graphene: limitations of non-equilibrium molecular dynamics simulations. J Chem Phys 136(2):024705

    Article  Google Scholar 

  • Lauga E, Powers TR (2009) The hydrodynamics of swimming microorganisms. Rep Prog Phys 72(9):096601

    Article  Google Scholar 

  • Masaki T, Fukazawa T, Matsumoto S, Itami T, Yoda S (2005) Measurements of diffusion coefficients of metallic melt under microgravity—current status of the development of shear cell technique towards JEM on ISS. Meas Sci Technol 16(2):327

    Article  Google Scholar 

  • Mason WP, Baker WO, McSkimin HJ, Heiss JH (1949) Measurement of shear elasticity and viscosity of liquids at ultrasonic frequencies. Phys Rev 75(6):936

    Article  Google Scholar 

  • McCarthy C, Savage HM, Koczynski T, Nielson MA (2016) An apparatus to measure frictional, anelastic, and viscous behavior in ice at temperate and planetary conditions. Rev Sci Instrum 87(5):055112

    Article  Google Scholar 

  • McKinnon WB (1999) Convective instability in Europa's floating ice shell. Geophys Res Lett 26(7):951–954

    Article  Google Scholar 

  • Mehl JW, Schmidt CL (1935) The conductivities of aqueous solutions of glycine, D, L-valine, and L-asparagine. J Gen Physiol 18(4):467

    Article  Google Scholar 

  • Meserschmidt M, Meyer M, Luger P (2003) Ultra-low-temperature X-ray data collection with a newly developed 0.1 mm Kapton-film cylinder for a closed-cycle helium cryostat. J Appl Crystallogr 36(6):1452–1454

    Article  Google Scholar 

  • Miyamoto H, Dohm JM, Baker VR, Beyer RA, Bourke M (2004) Dynamics of unusual debris flows on Martian sand dunes. Geophys Res Lett 31(13):L13701

    Article  Google Scholar 

  • Nadeau J, Lindensmith C, Deming JW, Fernandez VI, Stocker R (2016) Microbial morphology and motility as biosignatures for outer planet missions. Astrobiology 16(10):755–774

    Article  Google Scholar 

  • Ojakangas GW, Stevenson DJ (1989) Thermal state of an ice shell on Europa. Icarus 81(2):220–241

    Article  Google Scholar 

  • Pappalardo RT, Head JW, Greeley R, Sullivan RJ, Pilcher C, Schubert G, Goldsby DL (1998) Geological evidence for solid-state convection in Europa’s ice shell. Nature 391(6665):365

    Article  Google Scholar 

  • Pialucha T, Cawley P (1994) The detection of thin embedded layers using normal incidence ultrasound. Ultrasonics 32(6):431–440

    Article  Google Scholar 

  • Rani R, Kumar A, Sharma T, Saini B, Bamezai RK (2016) Interactions of L-aspartic acid with aqueous solution of 1, 2-propanediol at different temperatures: a volumetric, compressibility and viscometric approach. Acta Chim Slov 63(3):589–601

    Article  Google Scholar 

  • Reddyhoff T, Dwyer-Joyce R, Harper P (2006) Ultrasonic measurement of film thickness in mechanical seals. Seal Technol 2006(7):7–11

    Article  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409(6823):1092

    Article  Google Scholar 

  • Sauerbrey G (1959) Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z Phys 155(2):206–222

    Article  Google Scholar 

  • Schirru, M. (2017). Development of an ultrasonic sensing technique to measure lubricant viscosity in engine journal bearing in-situ. Springer

  • Schirru M, Mills R, Dwyer-Joyce R, Smith O, Sutton M (2015) Viscosity measurement in a lubricant film using an ultrasonically resonating matching layer. Tribol Lett 60(3):42

    Article  Google Scholar 

  • Schirru M, Li X, Cadeddu M, Dwyer-Joyce RS (2018) Development of a shear ultrasonic spectroscopy technique for the evaluation of viscoelastic fluid properties: theory and experimental validation. Ultrasonics. https://doi.org/10.1016/j.ultras.2018.07.002

  • Shah VV, Balasubramaniam K (2000) Measuring Newtonian viscosity from the phase of reflected ultrasonic shear wave. Ultrasonics 38(9):921–927

    Article  Google Scholar 

  • Sheen SH, Chien HT, Raptis AC (1995) An in-line ultrasonic viscometer. In: Review of progress in quantitative nondestructive evaluation. Springer, Boston, pp 1151–1158

  • Smolenskii GA, Krainik NN, Khuchua NP, Zhdanova VV, Mylnikova IE (1966) The curie temperature of LiNbO3. Phys Status Solidi B 13(2):309–314

    Article  Google Scholar 

  • Spencer JR, Tamppari LK, Martin TZ, Travis LD (1999) Temperatures on Europa from Galileo photopolarimeter-radiometer: nighttime thermal anomalies. Science 284(5419):1514–1516

    Article  Google Scholar 

  • Thirumaran S, & Sabu K (2009) Ultrasonic investigation of amino acids in aqueous sodium acetate medium

  • Van Wazer JR (1963) Viscosity and flow measurement: a laboratory handbook of rheology. Interscience Publishers, New York

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Engineering Research Society of the University of Sheffield for funding this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Schirru.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schirru, M., Dwyer-Joyce, R. & Vergoz, L. A new ultrasonic rheometer for space exploration in lander missions. Rheol Acta 58, 47–61 (2019). https://doi.org/10.1007/s00397-019-01127-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-019-01127-1

Keywords

Navigation