Advertisement

Rheologica Acta

, Volume 57, Issue 4, pp 327–338 | Cite as

Linear viscoelastic behavior of bidisperse polystyrene blends: experiments and slip-link predictions

  • Maria Katzarova
  • Teresita Kashyap
  • Jay D. Schieber
  • David C. Venerus
Original Contribution
  • 178 Downloads

Abstract

The linear viscoelastic behavior of three well-entangled linear monodisperse polystyrene melts and their blends is investigated. The monodisperse melts are blended in a 1:1 weight ratio to obtain three polystyrene bidisperse blends for which the linear viscoelastic behavior is also measured. Special attention is paid to controlling sample size and solvent content, and checking for consistency in the high-frequency regime. We also attempt to estimate uncertainty quantitatively. The experimental results agree well with the discrete slip-link model, a robust mesoscopic theory that has been successful in predicting the rheology of flexible entangled polymer liquids and gels. Using recently developed analytic expressions for the relaxation modulus, predictions of the monodisperse samples are made. The parameters for the model are obtained from the low-frequency crossover of one experiment. Using this parameter set without adjustment, predictions over the fully accessible experimental frequency range are obtained for the monodisperse samples and their blends with very good agreement.

Keywords

Polymer blend Stochastic simulation Polystyrene Dynamic moduli 

Notes

Acknowledgments

Professor DCV would like to acknowledge the financial support provided by the National Science Foundation (NSF Grant CBET-1236576) and Professor JDS gratefully thanks the Army Research Office (Grants W911NF-08-2-0058 and W911NF-09-2-0071) and the National Science Foundation (NSF Grant CBET-1336442).

References

  1. Andreev M, Schieber JD (2015) Accessible and quantitative entangled polymer rheology predictions, suitable for complex flow calculations. Macromolecules 48:1606–1613CrossRefGoogle Scholar
  2. Andreev M, Khaliullin RN, Steenbakkers RJA, Schieber JD (2013) Approximations of the discrete slip-link model and their effect on nonlinear rheology predictions. J Rheol 57:535–557CrossRefGoogle Scholar
  3. Andreev M, Feng H, Yang L, Schieber JD (2014) Universality and speedup in equilibrium and nonlinear rheology predictions of the fixed slip-link model. J Rheol 58:723–736CrossRefGoogle Scholar
  4. Archer LA et al. (2001) Linear and nonlinear rheology of bidisperse polymer blends. J Rheol (1978-present) 45:691–708Google Scholar
  5. Auhl D, Ramirez J, Likhtman AE, Chambon P, Fernyhough C (2008) Linear and nonlinear shear flow behavior of monodisperse polyisoprene melts with a large range of molecular weights. J Rheol 52:801–835CrossRefGoogle Scholar
  6. Bach A, Almdal K, Rasmussen HK, Hassager O (2003) Elongational viscosity of narrow molar mass distribution polystyrene. Macromolecules 36:5174–5179CrossRefGoogle Scholar
  7. Baumgaertel M, Schausberger A, Winter H (1990) The relaxation of polymers with linear flexible chains of uniform length. Rheol Acta 29:400–408CrossRefGoogle Scholar
  8. Bernabei M, Moreno AJ, Zaccarelli E, Sciortino F, Colmenero J (2011) Chain dynamics in nonentangled polymer melts: a first-principle approach for the role of intramolecular barriers. Soft Matter 7:1364–1368CrossRefGoogle Scholar
  9. Das C, Inkson N J, Read DJ, Kelmanson MA, McLeish TC (2006) Computational linear rheology of general branch-on-branch polymers. J Rheol (1978-present) 50:207–234CrossRefGoogle Scholar
  10. Desai PS, Kang B-G, Katzarova M, Hall R, Huang Q, Lee S, Shivokhin M, Chang T, Venerus DC, Mays J et al (2016) Challenging tube and slip-link models: predicting the linear rheology of blends of wellcharacterized star and linear 1, 4-polybutadienes. Macromolecules 49:4964–4977CrossRefGoogle Scholar
  11. Doi M (1988) The theory of polymer dynamics, vol 73. Oxford University Press, OxfordGoogle Scholar
  12. Edwards S (1967) The statistical mechanics of polymerized material. Proc Phys Soc 92:9CrossRefGoogle Scholar
  13. Feng H, Andreev M, Pilyugina E, Schieber JD (2016) Smoothed particle hydrodynamics simulation of viscoelastic flows with the slip-link model. Mol Syst Des Eng 1:99–108CrossRefGoogle Scholar
  14. Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New YorkGoogle Scholar
  15. Graham RS, Likhtman AE, McLeish TC, Milner ST (2003) Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release. J Rheol (1978-present) 47:1171–1200CrossRefGoogle Scholar
  16. Hengeller L, Huang Q, Dorokhin A, Alvarez N J, Almdal K, Hassager O (2016) Stress relaxation of bi-disperse polystyrene melts. Rheol Acta 55:303–314CrossRefGoogle Scholar
  17. Huang Q, Agostini S, Hengeller L, Shivokhin M, Alvarez N J, Hutchings LR, Hassager O (2016) Dynamics of star polymers in fast extensional flow and stress relaxation. Macromolecules 49:6694–6699CrossRefGoogle Scholar
  18. Inoue T, Okamoto H, Osaki K (1991) Birefringence of amorphous polymers. 1. Dynamic measurement on polystyrene. Macromolecules 24:5670–5675CrossRefGoogle Scholar
  19. Jensen MK, Khaliullin R, Schieber JD (2012) Self-consistent modeling of entangled network strands and linear dangling structures in a single-strand mean-field slip-link model. Rheol Acta 51:21–35CrossRefGoogle Scholar
  20. Kashyap T (2011) Development of a modified lubricated squeezing flow technique for generating equibiaxial elongational flows in polymer melts. Ph.D. thesis, Illinois Institute of TechnologyGoogle Scholar
  21. Katzarova M, Andreev M, Sliozberg YR, Mrozek RA, Lenhart JL, Andzelm JW, Schieber J D (2014) Rheological predictions of network systems swollen with entangled solvent. AIChE J 60:1372–1380CrossRefGoogle Scholar
  22. Katzarova M, Yang L, Andreev M, Córdoba A, Schieber JD (2015) Analytic slip-link expressions for universal dynamic modulus predictions of linear monodisperse polymer melts. Rheol Acta 54:169–183CrossRefGoogle Scholar
  23. Khaliullin RN, Schieber JD (2009) Self-consistent modeling of constraint release in a single-chain mean-field slip-link model. Macromolecules 42:7504–7517CrossRefGoogle Scholar
  24. Khaliullin RN, Schieber JD (2010) Application of the slip-link model to bidisperse systems. Macromolecules 43:6202–6212CrossRefGoogle Scholar
  25. Likhtman AE (2005) Single-chain slip-link model of entangled polymers: simultaneous description of neutron spin-echo, rheology, and diffusion. Macromolecules 38:6128–6139CrossRefGoogle Scholar
  26. Likhtman AE, McLeish TCB (2002) Quantitative theory for linear dynamics of linear entangled polymers. Macromolecules 35:6332–6343CrossRefGoogle Scholar
  27. Masubuchi Y (2014) Simulating the flow of entangled polymers. Annu Rev Chem Biomol Eng 5:11–33CrossRefGoogle Scholar
  28. Masuda T, Kitagawa K, Inoue T, Onogi S (1970) Rheological properties of anionic polystyrenes. II. Dynamic viscoelasticity of blends of narrow-distribution polystyrenes. Macromolecules 3:116–125CrossRefGoogle Scholar
  29. McLeish TC, Milner ST (1999) Entangled dynamics and melt flow of branched polymers. Springer, Berlin, pp 195–256Google Scholar
  30. Neergaard J, Schieber JD (2000) A full-chain network model with sliplinks and binary constraint releaseGoogle Scholar
  31. Nielsen JK, Rasmussen HK, Hassager O, McKinley GH (2006) Elongational viscosity of monodisperse and bidisperse polystyrene melts. J Rheol (1978-present) 50:453–476CrossRefGoogle Scholar
  32. Pilyugina E, Andreev M, Schieber JD (2012) Dielectric relaxation as an independent examination of relaxation mechanisms in entangled polymers using the discrete slip-link model. Macromolecules 45:5728–5743CrossRefGoogle Scholar
  33. Rouse PE (1953) A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J Chem Phys 21:1272–1280CrossRefGoogle Scholar
  34. Schausberger A, Schindlauer G, Janeschitz-Kriegl H (1985) Linear elastico-viscous properties of molten standard polystyrenes. Rheol Acta 24:220–227CrossRefGoogle Scholar
  35. Schieber JD (2003a) Fluctuations in entanglements of polymer liquids. J Chem Phys 118:5162–5166Google Scholar
  36. Schieber JD (2003b) Generic compliance of a temporary network model with sliplinks, chain-length fluctuations, segment-connectivity and constraint release. J Non-Equilib Thermodyn 28:179–188Google Scholar
  37. Schieber JD, Andreev M (2014) Entangled polymer dynamics in equilibrium and flow modeled through slip links. Annu Rev Chem Biomol EngGoogle Scholar
  38. Schieber JD, Indei T, Steenbakkers RJA (2013a) Fluctuating entang- lements in single-chain mean-field models. Polymers 5:643–678Google Scholar
  39. Schieber JD, Neergaard J, Gupta S (2003b) A full-chain, temporary network model with sliplinks, chain-length fluctuations, chain connectivity and chain stretching. J Rheol (1978-present) 47:213–233Google Scholar
  40. Schultheisz CR, Leigh SD (2002) Certification of the rheological behavior of SRM 2490, polyisobutylene dissolved in 2, 6, 10, 14- tetramethylpentadecane. NIST Spec Publ 260:2–27Google Scholar
  41. Schweizer T, Hostettler J, Mettler F (2008) A shear rheometer for measuring shear stress and both normal stress differences in polymer melts simultaneously: the MTR 25. Rheol Acta 47:943–957CrossRefGoogle Scholar
  42. Steenbakkers RJA, Schieber J D (2012) Derivation of free energy expressions for tube models from coarse-grained slip-link models. J Chem Phys 137:034901CrossRefGoogle Scholar
  43. Steenbakkers RJA, Tzoumanekas C, Li Y, Liu WK, Kröger M, Schieber JD (2014) Primitive-path statistics of entangled polymers: mapping multi-chain simulations onto single-chain mean-field models. New J Phys 16:015027CrossRefGoogle Scholar
  44. Van Ruymbeke E, Masubuchi Y, andWatanabe H (2012) Effective value of the dynamic dilution exponent in bidisperse linear polymers: from 1 to 4/3. Macromolecules 45:2085–2098CrossRefGoogle Scholar
  45. Wang Z, Chen X, Larson RG (2010) Comparing tube models for predicting the linear rheology of branched polymer melts. J Rheol (1978-present) 54:223–260CrossRefGoogle Scholar
  46. Watanabe H, Kotaka T (1984) Viscoelastic properties and relaxation mechanisms of binary blends of narrow molecular weight distribution polystyrenes. Macromolecules 17:2316–2325CrossRefGoogle Scholar
  47. Watanabe H, Sakamoto T, Kotaka T (1985) Entanglements in linear polystyrenes. Macromolecules 18:1436–1442CrossRefGoogle Scholar
  48. Watanabe H, Ishida S, Matsumiya Y, Inoue T (2004) Test of full and partial tube dilation pictures in entangled blends of linear polyisoprenes. Macromolecules 37:6619–6631CrossRefGoogle Scholar
  49. Zheng W, Simon S (2006) Polystyrene freeze-dried from dilute solution: Tg depression and residual solvent effects. Polymer 47:3520–3527CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Maria Katzarova
    • 1
  • Teresita Kashyap
    • 1
  • Jay D. Schieber
    • 1
    • 2
    • 3
  • David C. Venerus
    • 1
  1. 1.Department of Chemical and Biological Engineering, and Center for Molecular Study of Condensed Soft MatterIllinois Institute of TechnologyChicagoUSA
  2. 2.Department of PhysicsIllinois Institute of TechnologyChicagoUSA
  3. 3.Department of Applied MathematicsIllinois Institute of TechnologyChicagoUSA

Personalised recommendations