Advertisement

Rheologica Acta

, Volume 57, Issue 4, pp 307–315 | Cite as

Comparative study of the electrorheological effect in suspensions of needle-like and isotropic cerium dioxide nanoparticles

  • Alexander V. Agafonov
  • Anton S. Kraev
  • Olga S. Ivanova
  • Olga L. Evdokimova
  • Tatiana V. Gerasimova
  • Alexander E. Baranchikov
  • Vladimir V. Kozik
  • Vladimir K. Ivanov
Original Contribution

Abstract

A novel approach to the analysis of the electrorheological effect is proposed, based on the expansion of dimensionless relative shear stress as function of electric field strength in the power series \( {\tau}_{\mathrm{rel}}=\frac{\tau_E}{\tau }=1+\frac{\alpha }{\tau }E+\frac{\beta }{\tau }{E}^n \). The application of this approach to investigation of the electrorheological effect in suspensions of isotropic and needle-like CeO2 nanoparticles in polydimethylsiloxane has revealed that the polynomial coefficients can be judged as a measure of the efficiency of transformation of electrical energy into mechanical energy. The values of α and β coefficients depend on the shape and concentration of filler particles, as well as on the shear rate. The value and the sign of these coefficients determine both the magnitude of the electrorheological effect and the type of dependence of the shear stress (linear or power law) on the strength of the electric field. It has been shown that the values of α and β coefficients for the electrorheological fluids with needle-like particles are greater than for fluids with isotropic particles (at the same concentration of suspensions), which is associated with the different polarization of particles in the applied electric field.

Graphical abstract

A novel approach to the analysis of the electrorheological effect is proposed.

Keywords

Dispersions Electrorheology Morphology 

Notes

Funding

This study was financially supported by Russian Science Foundation (Project no. 16-13-10399). The research was performed using the equipment of the JRC PMR IGIC RAS.

Supplementary material

397_2018_1076_MOESM1_ESM.docx (251 kb)
ESM 1 (DOCX 251 kb)

References

  1. Agafonov AV, Zakharov AG (2010) Electrorheological fluids. Russ J Gen Chem 80:567–575CrossRefGoogle Scholar
  2. Agafonov AV, Krayev AS, Davydova OI, Ivanov KV, Shekunova TO, Baranchikov AE, Ivanova OS, Borilo LP, Garshev AV, Kozik VV, Ivanov VK (2016) Nanocrystalline ceria: a novel material for electrorheological fluids. RSC Adv 6:88851–88858CrossRefGoogle Scholar
  3. Choi HJ, Jhon MS (2009) Electrorheology of polymers and nanocomposites. Soft Matter 5:1562–1567CrossRefGoogle Scholar
  4. Crassous JJ, Mihut AM, Wernersson E, Pfleiderer P, Vermant J, Linse P, Schurtenberger P (2014) Field-induced assembly of colloidal ellipsoids into well-defined microtubules. Nat Commun 5:5516CrossRefGoogle Scholar
  5. Davydova OI, Kraev AS, Redozubov AA, Trusova TA, Agafonov AV (2016) Effect of polydimethylsiloxane viscosity on the electrorheological activity of dispersions based on it. Russ J Phys Chem A 90:1269–1273CrossRefGoogle Scholar
  6. Duan X, Luo W, Chen H, He Y (2000) The effect of particle shape on water-free mica ER fluids. J Intell Mater Syst Struct 11:43–46CrossRefGoogle Scholar
  7. Feng P, Wan Q, Fu XQ, Wang TH, Tian Y (2005) Anomalous electrorheological behavior of ZnO nanowires. Appl Phys Lett 87:033114CrossRefGoogle Scholar
  8. Halsey TC (1992) Electrorheological fluids. Science 258:761–766CrossRefGoogle Scholar
  9. Hao T (2001) Electrorheological fluids. Adv Mater 13:1847–1857CrossRefGoogle Scholar
  10. Hong J-Y, Choi M, Kim C, Jang J (2000) Geometrical study of electrorheological activity with shape-controlled titania-coated silica nanomaterials. J Colloid Interface Sci 347:177–182CrossRefGoogle Scholar
  11. Ji Z, Wang X, Zhang H, Lin S, Meng H, Sun B, George S, Xia T, Nel AE, Zink JI (2012) Designed synthesis of CeO2 nanorods and nanowires for studying toxicological effects of high aspect ratio nanomaterials. ACS Nano 6:5366–5380CrossRefGoogle Scholar
  12. Kanu RC, Shaw MT (1998) Enhanced electrorheological fluids using anisotropic particles. J Rheol 42:657–670CrossRefGoogle Scholar
  13. Kor YK, See H (2010) The electrorheological response of elongated particles. Rheol Acta 49:741–756CrossRefGoogle Scholar
  14. Kun-Quan L, Rong S, Xue-Zhao W, Gang S, Wei-Jia W, Ji-Xing L (2006) Polar molecule dominated electrorheological effect. Chin Phys 15:2476–2480CrossRefGoogle Scholar
  15. Liu YD, Choi HJ (2012) Electrorheological fluids: smart soft matter and characteristics. Soft Matter 8:11961–11978CrossRefGoogle Scholar
  16. Mittal M, Furst EM (2009) Electric field-directed convective assembly of ellipsoidal colloidal particles to create optically and mechanically anisotropic thin films. Adv Funct Mater 19:3271–3278CrossRefGoogle Scholar
  17. Moradian N, Ting DS-K, Cheng S (2009) The effects of free stream turbulence on the drag coefficient of a sphere. Exp Thermal Fluid Sci 33:460–471CrossRefGoogle Scholar
  18. Mrlik M, Pavlinek V (2016) Magnetorheological suspensions based on modified carbonyl iron particles with an extremely thin poly(n-butyl acrylate) layer and their enhanced stability properties. Smart Mater Struct 25:085011CrossRefGoogle Scholar
  19. Otsubo Y (1999) Electrorheology of whisker suspensions. Colloids Surf A Physicochem Eng Asp 153:459–466CrossRefGoogle Scholar
  20. Parthasarathy M, Klingenberg DJ (1996) Electrorheology: mechanisms and models. Mater Sci Eng RI7:57–103CrossRefGoogle Scholar
  21. Peer P, Stenicka M, Sedlacik M, Filip P, Pavlinek V (2016) Magnetorheological behaviour and electrospinning of poly(ethylene oxide) suspensions with magnetic nanoparticles. J Intell Mater Syst Struct 27:898–903CrossRefGoogle Scholar
  22. Pokrovskiĭ VN (1972) Stresses, viscosity, and optical anisotropy of a moving suspension of rigid ellipsoids. Sov Phys Usp 14:737–746CrossRefGoogle Scholar
  23. Qi Y, Wen W (2002) Influences of geometry of particles on electrorheological fluids. J Phys D 35:2231–2235CrossRefGoogle Scholar
  24. Ramos-Tejada MM, Espin MJ, Perea R, Delgado AV (2009) Electrorheology of suspensions of elongated goethite particles. J Non-Newtonian Fluid Mech 159:34–40CrossRefGoogle Scholar
  25. Ramos-Tejada MM, Arroyo FJ, Delgado AV (2010) Negative electrorheological behavior in suspensions of inorganic particles. Langmuir 26:16833–16840CrossRefGoogle Scholar
  26. Sedlacik M, Mrlik M, Kozakova Z, Pavlinek V, Kuritka I (2013) Synthesis and electrorheology of rod-like titanium oxide particles prepared via microwave-assisted molten-salt method. Colloid Polym Sci 291:1105–1111CrossRefGoogle Scholar
  27. Shen R, Wang X, Lu Y, Wang D, Sun G, Cao Z, Lu K (2009) Polar-molecule-dominated electrorheological fluids featuring high yield stresses. Adv Mater 21:4631–4635CrossRefGoogle Scholar
  28. Sheng P, Wen W (2012) Electrorheological fluids: mechanisms, dynamics, and micro fluidics applications. Annu Rev Fluid Mech 44:143–174CrossRefGoogle Scholar
  29. Shkel YM, Klingenberg DJ (1999) A continuum approach to electrorheology. J Rheol 43:1307–1322CrossRefGoogle Scholar
  30. Tan P, Tian WJ, Wu XF, Huang JY, Zhou LW, Huang JP (2009) Saturated orientational polarization of polar molecules in giant electrorheological fluids. J Phys Chem B 113:9092–9097CrossRefGoogle Scholar
  31. Wen W, Huang X, Yang S, Lu K, Sheng P (2003) The giant electrorheological effect in suspensions of nanoparticles. Nat Mater 2:727–730CrossRefGoogle Scholar
  32. Wen W, Huang X, Sheng P (2008) Electrorheological fluids: structures and mechanisms. Soft Matter 4:200–210CrossRefGoogle Scholar
  33. Winslow WM (1947) Method and means for translating electrical impulses into mechanical force. US Patent 2:417–850Google Scholar
  34. Winslow WM (1949) Induced fibration of suspensions. J Appl Phys 20:1137–1140CrossRefGoogle Scholar
  35. Wu J, Song Z, Liu F, Guo J, Cheng Y, Ma S, Xu G (2016) Giant electrorheological fluids with ultrahigh electrorheological efficiency based on a micro/nano hybrid calcium titanyl oxalate composite. NPG Asia Mater 8:e322CrossRefGoogle Scholar
  36. Yin J, Zhao X (2006) Titanate nano-whisker electrorheological fluid with high suspended stability and ER activity. Nanotechnology 17:192–196CrossRefGoogle Scholar
  37. Yin J, Zhao X (2011) Electrorheology of nanofiber suspensions. Nanoscale Res Lett 6:256CrossRefGoogle Scholar
  38. Yin J, Zhao X, Xiang L, Xia X, Zhang X (2009) Enhanced electrorheology of suspensions containing sea-urchin-like hierarchical Cr-doped titania particles. Soft Matter 5:4687–4697CrossRefGoogle Scholar
  39. Zhang K, Liu YD, Jhon MS, Choi HJ (2013) Generalized yield stress equation for electrorheological fluids. J Colloid Interface Sci 409:259–263CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Alexander V. Agafonov
    • 1
    • 2
  • Anton S. Kraev
    • 1
  • Olga S. Ivanova
    • 3
  • Olga L. Evdokimova
    • 1
  • Tatiana V. Gerasimova
    • 1
  • Alexander E. Baranchikov
    • 3
  • Vladimir V. Kozik
    • 2
  • Vladimir K. Ivanov
    • 2
    • 3
  1. 1.Krestov Institute of Solution Chemistry of the Russian Academy of SciencesIvanovoRussia
  2. 2.National Research Tomsk State UniversityTomskRussia
  3. 3.Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscowRussia

Personalised recommendations