Abstract
We have developed an oscillatory cross-slot extensional rheometer capable of performing measurements with unprecedentedly small volumes of test fluids (∼10–100 μL). This provides the possibility of studying exotic and precious or scarce bio-fluids, such as synovial fluid. To test our system, we have looked at a relatively abundant and accessible biological fluid, namely human saliva; a complex aqueous mixture of high molecular weight mucin molecules and other components. The results represent our first attempts to by this technique and as yet we have only sampled a small dataset. However, we believe we have produced the first successful quantitative measurements of extensional viscosity, Trouton ratio, and flow-induced birefringence made on saliva samples. The results significantly add to the scant literature on saliva rheology, especially in extension, and demonstrate the important role of saliva extensibility in relation to function.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Backus C, Carrington SP, Fisher LR, Odell JA, Rodrigues DA (2002) The roles of extensional and shear flows of synovial fluid and replacement systems in joint protection. In: Kennedy JF, Phillips OG, Williams PA, Hascall VC (eds) Hyaluronan: chemical, biochemical and biological aspects, vol 1. Woodhead Publishing Ltd., Cambridge, pp 209–218
Beeley JA (1993) Fascinating families of proteins: electrophoresis of human saliva. Biochem Soc Trans 21:133–138
Briedis D, Moutrie MF, Balmer RT (1980) A study of the shear viscosity of human whole saliva. Rheol Acta 19:365–374
Campese M, Sun X, Bosch JA, Oppenheim FG, Helmerhorst EJ (2009) Concentration and fate of histatins and acidic proline-rich proteins in the oral environment. Arch Oral Biol 54:345–353
Carrington SP, Odell JA, Fisher L, Mitchell J, Hartley L (1996) Polyelectrolyte behaviour of dilute xanthan salt effects on extensional rheology. Polymer 37:2871–2875
Carrington SP, Tatham JP, Odell JA, Saez AE (1997a) Macromolecular dynamics in extensional flows: 1. Birefringence and viscometry. Polymer 38:4151–4164
Carrington SP, Tatham JP, Odell JA, Saez AE (1997b) Macromolecular dynamics in extensional flows: 2. The evolution of molecular strain. Polymer 38:4595–4607
Clift AF, Scott-Blair GN (1945) Observations on certain rheological of human cervical secretions. Proc R Soc Med 39:1–9
Colby RH (2010) Structure and linear viscoelasticity of flexible polymer solutions: comparison of polyelectrolyte and neutral polymer solutions. Rheol Acta 49:425–442
Craven TJ, Rees JM, Zimmerman WB (2010) Pressure sensor positioning in an electrokinetic microrheometer device: simulations of shear-thinning liquid flows. Microfluid Nanofluid 9:559–571
Davies JR, Kirkham S, Svitacheva N, Thornton DJ, Carlstedt I (2007) MUC16 is produced in tracheal surface epithelium and submucosal glands and is present in secretions from normal human airway and cultured bronchial epithelial cells. Int J Biochem Cell Biol 39:1943–1954
Davis SS (1971) The rheological properties of saliva. Rheol Acta 10:28–35
Dewar MR, Parfitt GJ (1954) An investigation of the physical properties of saliva and their relationship to the mucin content. J Dent Res 33:596–605
Erbring H (1936) Untersuchungen über die spinnbarkeit flussige systeme. Kolloid-Beihefte 44:171–177
Flory PJ (1969) Statistical mechanics of chain molecules. Interscience, New York
Fox PC, Bodner L, Tabak LA, Levine MJ (1985) Quantitation of total human salivary mucins. J Dent Res 64:327
Glantz P-O (1997) Interfacial phenomena in the oral cavity. Colloids Surf, A 123–124:657–670
Graessley WW (1980) Polymer chain dimensions and the dependence of viscoelastic properties on concentration, molecular weight and solvent power. Polymer 21:258–262
Hattrup CL, Gendler SJ (2008) Structure and function of the cell surface (tethered) mucins. Ann Rev Phys 70:431–457
Haward SJ, Odell JA, Li Z, Yuan X-F (2010a) Extensional rheology of dilute polymer solutions in oscillatory cross-slot flow: the transient behaviour of birefringent strands. Rheol Acta 49:637–645. doi:10.1007/s00397-009-0420-6
Haward SJ, Odell JA, Li Z, Yuan X-F (2010b) The rheology of polymer solution elastic strands in extensional flow. Rheol Acta 49:781–788. doi:10.1007/s00397-010-0453-x
Helmerhorst EJ, Oppenheim FG (2007) Saliva: a dynamic proteome. J Dent Res 86:680–693
Keller A, Müller AJ, Odell JA (1987) Entanglements in semi-dilute solutions as revealed by elongational flow studies. Prog Colloid Polym Sci 75:179–200
Kesimer M, Sheehan JK (2008) Analysing the functions of large glycoconjugates through the dissipative properties of their absorbed layers using the gel-forming mucin MUC5B as an example. Glycobiology 18:463–472
Kesimer M, Makhov AM, Griffith JD, Verdugo P, Sheehan JK (2010) Unpacking a gel-forming mucin: a view of MUC5B organization after granular release. Am J Physiol Lung Cell Mol Physiol 298:L15–L22
Kratky O, Porod G (1949) Röntgenuntersuchung gelöszer Fadenmoleküle. Rec Trav Chim Pays-Bas 68:1106–1123
Lacombe CH, Essabbah H (1981) Comparative haemorheology of pathological blood. Scand J Clin Lab Investig 41:249–250
Mehrotra R, Thornton DJ, Sheehan JK (1998) Isolation and physical characterization of the MUC7 (MG2) mucin from saliva: evidence for self-association. Biochem J 334:415–422
Odell JA, Carrington SP (2006) Extensional flow oscillatory rheometry. J Non-Newton Fluid Mech 137:110–120
Pedersen AM, Bardow A, Beier Jensen S, Nauntofte B (2002) Saliva and gastrointestinal functions of taste, mastication, swallowing and digestion. Oral Dis 8:117–129
Perkins TT, Smith DE, Chu S (1997) Single polymer dynamics in an elongational flow. Science 276:2016–2021
Rayment SA, Liu B, Offner GD, Oppenheim FG, Troxler RF (2000) Immunoquantification of human salivary mucins MG1 and MG2 in stimulated whole saliva: factors influencing mucin levels. J Dent Res 79:1765–1772
Raynal BDE, Hardingham TE, Thornton DJ, Sheehan JK (2002) Concentrated solutions of salivary MUC5B mucin do not replicate the gel-forming properties of saliva. Biochem J 362:289–296
Riddiford CL, Jerrard HG (1970) Limitations on the measurement of relaxation times using a pulsed Kerr effect method. J Phys D Appl Phys 3:1314–1321
Rossi S, Marciello M, Bonferoni MC, Ferrari F, Sandri G, Dacarro C, Grisoli P, Caramella C (2010) Thermally sensitive gels based on chitosan derivatives for the treatment of oral mucositis. Eur J Pharm Biopharm 74:248–254
Round AN, Berry M, McMaster TJ, Stoll S, Gowers D, Corfield AP, Miles MJ (2002) Heterogeneity and persistence length in human ocular mucins. Biophys J 83:1661–1670
Rubin BK (2007) Mucus structure and properties in cystic fibrosis. Paediatr Respir Rev 8:4–7
Schipper RG, Silletti E, Vingerhoeds MH (2007) Saliva as research material: biochemical, physicochemical and practical aspects. Arch Oral Biol 52:1114–1135
Schwarz WH (1987) The rheology of saliva. J Dent Res 66:660–666
Scrivener O, Berner C, Cressely R, Hocquart R, Sellin R, Vlachos NS (1979) Dynamical behaviour of drag-reducing polymer solutions. J Non-Newton Fluid Mech 5:475–495
Sharma V, Jaishankar A, Wang Y-C, McKinley GH (2010) Rheology of globular proteins: apparent yield stress, high shear rate viscosity and interfacial viscoelasticity of bovine serum albumin solutions. Biophysical J
Sheehan JK, Howard M, Richardson PS, Longwill T, Thornton DJ (1999) Physical characterization of a low-charge glycoform of the MUC5B mucin comprising the gel-phase of an asthmatic respiratory mucous plug. Biochem J 338:507–513
Smith DE, Chu S (1998) Response of flexible polymers to sudden elongational flow. Science 281:1335–1340
Stokes JR, Davies GA (2007) Viscoelasticity of human whole saliva collected after acid and mechanical stimulation. Biorheology 44:141–160
Thomsson KA, Prakobphol A, Leffler H, Reddy MS, Levine MJ, Fisher SJ, Hansson GC (2002) The salivary mucin MG1 (MUC5B) carries a repertoire of unique oligosaccharides that is large and diverse. Glycobiology 12:1–14
Thornton DJ, Khan N, Mehrotra R, Howard M, Veerman E, Packer NH, Sheehan JK (1999) Salivary mucin MG1 is comprised almost entirely of different glycosylated forms of the MUC5B gene product. Glycobiology 9:293–302
Treloar LKG (1975) The physics of rubber elasticity, 3rd edn. Clarendon, Oxford
Van Aken GA, Vingerhoeds MH, de Hoog EHA (2007) Food colloids under oral conditions. Curr Opin Colloid Interface Sci 12:251–262
Van der Reijden WA, Veerman ECI, Amerongen AVN (1993a) Shear rate-dependent viscoelastic behaviour of human glandular salivas. Biorheology 30:141–152
Van der Reijden WA, Veerman ECI, Amerongen AVN (1993b) Erratum: shear rate-dependent viscoelastic behaviour of human glandular salivas. Biorheology 30:301
Waterman HA, Blom C, Holterman HJ, ‘s-Gravenmade EJ, Mellema J (1988) Rheological properties of human saliva. Arch Oral Biol 33:589–596
Zussman E, Yarin AL, Nagler RM (2007) Age- and flow-dependency of salivary viscoelasticity. J Dent Res 86:281–285
Acknowledgements
JA Odell and SJ Haward gratefully acknowledge the financial support of the Engineering and Physical Sciences Research Council (EPSRC), UK. We thank professor GH McKinley for the use of his m-VROC rheometer.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Haward, S.J., Odell, J.A., Berry, M. et al. Extensional rheology of human saliva. Rheol Acta 50, 869–879 (2011). https://doi.org/10.1007/s00397-010-0494-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00397-010-0494-1