Advertisement

Rheologica Acta

, Volume 50, Issue 11–12, pp 869–879 | Cite as

Extensional rheology of human saliva

  • Simon J. HawardEmail author
  • Jeff A. Odell
  • Monica Berry
  • Tim Hall
Original Contribution

Abstract

We have developed an oscillatory cross-slot extensional rheometer capable of performing measurements with unprecedentedly small volumes of test fluids (∼10–100 μL). This provides the possibility of studying exotic and precious or scarce bio-fluids, such as synovial fluid. To test our system, we have looked at a relatively abundant and accessible biological fluid, namely human saliva; a complex aqueous mixture of high molecular weight mucin molecules and other components. The results represent our first attempts to by this technique and as yet we have only sampled a small dataset. However, we believe we have produced the first successful quantitative measurements of extensional viscosity, Trouton ratio, and flow-induced birefringence made on saliva samples. The results significantly add to the scant literature on saliva rheology, especially in extension, and demonstrate the important role of saliva extensibility in relation to function.

Keywords

Birefringence Flow-induced orientation Viscometry Extensional flow Saliva Mucin 

Notes

Acknowledgements

JA Odell and SJ Haward gratefully acknowledge the financial support of the Engineering and Physical Sciences Research Council (EPSRC), UK. We thank professor GH McKinley for the use of his m-VROC rheometer.

References

  1. Backus C, Carrington SP, Fisher LR, Odell JA, Rodrigues DA (2002) The roles of extensional and shear flows of synovial fluid and replacement systems in joint protection. In: Kennedy JF, Phillips OG, Williams PA, Hascall VC (eds) Hyaluronan: chemical, biochemical and biological aspects, vol 1. Woodhead Publishing Ltd., Cambridge, pp 209–218CrossRefGoogle Scholar
  2. Beeley JA (1993) Fascinating families of proteins: electrophoresis of human saliva. Biochem Soc Trans 21:133–138Google Scholar
  3. Briedis D, Moutrie MF, Balmer RT (1980) A study of the shear viscosity of human whole saliva. Rheol Acta 19:365–374CrossRefGoogle Scholar
  4. Campese M, Sun X, Bosch JA, Oppenheim FG, Helmerhorst EJ (2009) Concentration and fate of histatins and acidic proline-rich proteins in the oral environment. Arch Oral Biol 54:345–353CrossRefGoogle Scholar
  5. Carrington SP, Odell JA, Fisher L, Mitchell J, Hartley L (1996) Polyelectrolyte behaviour of dilute xanthan salt effects on extensional rheology. Polymer 37:2871–2875CrossRefGoogle Scholar
  6. Carrington SP, Tatham JP, Odell JA, Saez AE (1997a) Macromolecular dynamics in extensional flows: 1. Birefringence and viscometry. Polymer 38:4151–4164CrossRefGoogle Scholar
  7. Carrington SP, Tatham JP, Odell JA, Saez AE (1997b) Macromolecular dynamics in extensional flows: 2. The evolution of molecular strain. Polymer 38:4595–4607CrossRefGoogle Scholar
  8. Clift AF, Scott-Blair GN (1945) Observations on certain rheological of human cervical secretions. Proc R Soc Med 39:1–9Google Scholar
  9. Colby RH (2010) Structure and linear viscoelasticity of flexible polymer solutions: comparison of polyelectrolyte and neutral polymer solutions. Rheol Acta 49:425–442CrossRefGoogle Scholar
  10. Craven TJ, Rees JM, Zimmerman WB (2010) Pressure sensor positioning in an electrokinetic microrheometer device: simulations of shear-thinning liquid flows. Microfluid Nanofluid 9:559–571CrossRefGoogle Scholar
  11. Davies JR, Kirkham S, Svitacheva N, Thornton DJ, Carlstedt I (2007) MUC16 is produced in tracheal surface epithelium and submucosal glands and is present in secretions from normal human airway and cultured bronchial epithelial cells. Int J Biochem Cell Biol 39:1943–1954CrossRefGoogle Scholar
  12. Davis SS (1971) The rheological properties of saliva. Rheol Acta 10:28–35CrossRefGoogle Scholar
  13. Dewar MR, Parfitt GJ (1954) An investigation of the physical properties of saliva and their relationship to the mucin content. J Dent Res 33:596–605CrossRefGoogle Scholar
  14. Erbring H (1936) Untersuchungen über die spinnbarkeit flussige systeme. Kolloid-Beihefte 44:171–177Google Scholar
  15. Flory PJ (1969) Statistical mechanics of chain molecules. Interscience, New YorkGoogle Scholar
  16. Fox PC, Bodner L, Tabak LA, Levine MJ (1985) Quantitation of total human salivary mucins. J Dent Res 64:327Google Scholar
  17. Glantz P-O (1997) Interfacial phenomena in the oral cavity. Colloids Surf, A 123–124:657–670CrossRefGoogle Scholar
  18. Graessley WW (1980) Polymer chain dimensions and the dependence of viscoelastic properties on concentration, molecular weight and solvent power. Polymer 21:258–262CrossRefGoogle Scholar
  19. Hattrup CL, Gendler SJ (2008) Structure and function of the cell surface (tethered) mucins. Ann Rev Phys 70:431–457CrossRefGoogle Scholar
  20. Haward SJ, Odell JA, Li Z, Yuan X-F (2010a) Extensional rheology of dilute polymer solutions in oscillatory cross-slot flow: the transient behaviour of birefringent strands. Rheol Acta 49:637–645. doi: 10.1007/s00397-009-0420-6 Google Scholar
  21. Haward SJ, Odell JA, Li Z, Yuan X-F (2010b) The rheology of polymer solution elastic strands in extensional flow. Rheol Acta 49:781–788. doi: 10.1007/s00397-010-0453-x CrossRefGoogle Scholar
  22. Helmerhorst EJ, Oppenheim FG (2007) Saliva: a dynamic proteome. J Dent Res 86:680–693CrossRefGoogle Scholar
  23. Keller A, Müller AJ, Odell JA (1987) Entanglements in semi-dilute solutions as revealed by elongational flow studies. Prog Colloid Polym Sci 75:179–200CrossRefGoogle Scholar
  24. Kesimer M, Sheehan JK (2008) Analysing the functions of large glycoconjugates through the dissipative properties of their absorbed layers using the gel-forming mucin MUC5B as an example. Glycobiology 18:463–472CrossRefGoogle Scholar
  25. Kesimer M, Makhov AM, Griffith JD, Verdugo P, Sheehan JK (2010) Unpacking a gel-forming mucin: a view of MUC5B organization after granular release. Am J Physiol Lung Cell Mol Physiol 298:L15–L22CrossRefGoogle Scholar
  26. Kratky O, Porod G (1949) Röntgenuntersuchung gelöszer Fadenmoleküle. Rec Trav Chim Pays-Bas 68:1106–1123CrossRefGoogle Scholar
  27. Lacombe CH, Essabbah H (1981) Comparative haemorheology of pathological blood. Scand J Clin Lab Investig 41:249–250CrossRefGoogle Scholar
  28. Mehrotra R, Thornton DJ, Sheehan JK (1998) Isolation and physical characterization of the MUC7 (MG2) mucin from saliva: evidence for self-association. Biochem J 334:415–422Google Scholar
  29. Odell JA, Carrington SP (2006) Extensional flow oscillatory rheometry. J Non-Newton Fluid Mech 137:110–120CrossRefGoogle Scholar
  30. Pedersen AM, Bardow A, Beier Jensen S, Nauntofte B (2002) Saliva and gastrointestinal functions of taste, mastication, swallowing and digestion. Oral Dis 8:117–129CrossRefGoogle Scholar
  31. Perkins TT, Smith DE, Chu S (1997) Single polymer dynamics in an elongational flow. Science 276:2016–2021CrossRefGoogle Scholar
  32. Rayment SA, Liu B, Offner GD, Oppenheim FG, Troxler RF (2000) Immunoquantification of human salivary mucins MG1 and MG2 in stimulated whole saliva: factors influencing mucin levels. J Dent Res 79:1765–1772CrossRefGoogle Scholar
  33. Raynal BDE, Hardingham TE, Thornton DJ, Sheehan JK (2002) Concentrated solutions of salivary MUC5B mucin do not replicate the gel-forming properties of saliva. Biochem J 362:289–296CrossRefGoogle Scholar
  34. Riddiford CL, Jerrard HG (1970) Limitations on the measurement of relaxation times using a pulsed Kerr effect method. J Phys D Appl Phys 3:1314–1321CrossRefGoogle Scholar
  35. Rossi S, Marciello M, Bonferoni MC, Ferrari F, Sandri G, Dacarro C, Grisoli P, Caramella C (2010) Thermally sensitive gels based on chitosan derivatives for the treatment of oral mucositis. Eur J Pharm Biopharm 74:248–254CrossRefGoogle Scholar
  36. Round AN, Berry M, McMaster TJ, Stoll S, Gowers D, Corfield AP, Miles MJ (2002) Heterogeneity and persistence length in human ocular mucins. Biophys J 83:1661–1670CrossRefGoogle Scholar
  37. Rubin BK (2007) Mucus structure and properties in cystic fibrosis. Paediatr Respir Rev 8:4–7CrossRefGoogle Scholar
  38. Schipper RG, Silletti E, Vingerhoeds MH (2007) Saliva as research material: biochemical, physicochemical and practical aspects. Arch Oral Biol 52:1114–1135CrossRefGoogle Scholar
  39. Schwarz WH (1987) The rheology of saliva. J Dent Res 66:660–666Google Scholar
  40. Scrivener O, Berner C, Cressely R, Hocquart R, Sellin R, Vlachos NS (1979) Dynamical behaviour of drag-reducing polymer solutions. J Non-Newton Fluid Mech 5:475–495CrossRefGoogle Scholar
  41. Sharma V, Jaishankar A, Wang Y-C, McKinley GH (2010) Rheology of globular proteins: apparent yield stress, high shear rate viscosity and interfacial viscoelasticity of bovine serum albumin solutions. Biophysical JGoogle Scholar
  42. Sheehan JK, Howard M, Richardson PS, Longwill T, Thornton DJ (1999) Physical characterization of a low-charge glycoform of the MUC5B mucin comprising the gel-phase of an asthmatic respiratory mucous plug. Biochem J 338:507–513CrossRefGoogle Scholar
  43. Smith DE, Chu S (1998) Response of flexible polymers to sudden elongational flow. Science 281:1335–1340CrossRefGoogle Scholar
  44. Stokes JR, Davies GA (2007) Viscoelasticity of human whole saliva collected after acid and mechanical stimulation. Biorheology 44:141–160Google Scholar
  45. Thomsson KA, Prakobphol A, Leffler H, Reddy MS, Levine MJ, Fisher SJ, Hansson GC (2002) The salivary mucin MG1 (MUC5B) carries a repertoire of unique oligosaccharides that is large and diverse. Glycobiology 12:1–14CrossRefGoogle Scholar
  46. Thornton DJ, Khan N, Mehrotra R, Howard M, Veerman E, Packer NH, Sheehan JK (1999) Salivary mucin MG1 is comprised almost entirely of different glycosylated forms of the MUC5B gene product. Glycobiology 9:293–302CrossRefGoogle Scholar
  47. Treloar LKG (1975) The physics of rubber elasticity, 3rd edn. Clarendon, OxfordGoogle Scholar
  48. Van Aken GA, Vingerhoeds MH, de Hoog EHA (2007) Food colloids under oral conditions. Curr Opin Colloid Interface Sci 12:251–262CrossRefGoogle Scholar
  49. Van der Reijden WA, Veerman ECI, Amerongen AVN (1993a) Shear rate-dependent viscoelastic behaviour of human glandular salivas. Biorheology 30:141–152Google Scholar
  50. Van der Reijden WA, Veerman ECI, Amerongen AVN (1993b) Erratum: shear rate-dependent viscoelastic behaviour of human glandular salivas. Biorheology 30:301Google Scholar
  51. Waterman HA, Blom C, Holterman HJ, ‘s-Gravenmade EJ, Mellema J (1988) Rheological properties of human saliva. Arch Oral Biol 33:589–596CrossRefGoogle Scholar
  52. Zussman E, Yarin AL, Nagler RM (2007) Age- and flow-dependency of salivary viscoelasticity. J Dent Res 86:281–285CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Simon J. Haward
    • 1
    • 3
    Email author
  • Jeff A. Odell
    • 1
  • Monica Berry
    • 2
  • Tim Hall
    • 2
  1. 1.H.H. Wills Physics LaboratoryUniversity of BristolBristolUK
  2. 2.University of Bristol Mucin Research GroupBristol Royal InfirmaryBristolUK
  3. 3.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations