Skip to main content
Log in

Grafting of polyamide 6 on a styrene–acrylonitrile maleic anhydride terpolymer: melt rheology at the critical gel state

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

In this work, we studied the melt rheology of multigraft copolymers with a styrene–acrylonitrile maleic anhydride (SANMA) terpolymer backbone and randomly grafted polyamide 6 (PA 6) chains. The multi-grafted chains were formed by interfacial reactions between the maleic anhydride groups of SANMA and the amino end groups of PA 6 during melt blending. Because of the phase separation of SANMA and PA 6, the grafted SANMA backbones formed nearly circular domains which were embedded in the PA 6 melt with a diameter in the order of 20 to 40 nm. The linear viscoelastic behaviour of PA 6/SANMA blends at a sufficiently large SANMA concentration displayed the characteristics of the critical gel state, i.e. the power relations G′ ∝ G′′ ∝ ω 0.5. In elongation, the PA 6/SANMA blend at the critical gel state showed a non-linear strain hardening behaviour already at a very small Hencky strain. In contrast to neat PA 6, the elasticity of the PA 6/SANMA blends was strongly pronounced, which was demonstrated by recovery experiments. Rheotens tests agreed with the linear viscoelastic shear oscillations and the measurements using the elongational rheometer RME. Increasing the SANMA concentration led to a larger melt strength and a reduced drawability. The occurrence of the critical gel state can be interpreted by the cooperative motion of molecules which develops between the grafted PA 6 chains of neighbouring micelle-like SANMA domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Araújo EM, Hage Jr E, Carvalho AJF (2003) Morphological, mechanical and rheological properties of nylon 6/acrylonitrile-butadiene-styrene blends compatibilized with MMA/MA copolymers. J Mater Sci 38(17):3515–3520

    Article  Google Scholar 

  • Asthana H, Jayaraman K (1999) Rheology of reactively compatibilized polymer blends with varying extent of interfacial reaction. Macromolecules 32(10):3412–3419

    Article  ADS  CAS  Google Scholar 

  • Bangarusampath DS, Ruckdäschel H, Altstädt V, Sandler JKW, Wassner E, Shaffer MSP (submitted) Melt rheology of carbon nanofibre-reinforced poly(ether ether ketone) under shear and elongational flow. Polym Eng Sci (submitted)

  • Bates FS (1984) Block copolymers near the microphase separation transition 2. Linear dynamic mechanical-properties. Macromolecules 17(12):2607–2613

    Article  ADS  CAS  Google Scholar 

  • Bayer RK (1979) The force–strain relation of extruded polyethylene-melts. Rheol Acta 18(1):25–32

    Article  CAS  Google Scholar 

  • Chambon F, Winter HH (1987) Linear viscoelasticity at the gel point of a cross-linking PDMS with imbalanced stoichiometry. J Rheol 31(8):683–697

    Article  ADS  CAS  Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon, Oxford

    Google Scholar 

  • Fredrickson G, Bates FS (1996) Dynamics of block copolymers: theory and experiment. Annu Rev Mater Sci 26:501–550

    Article  CAS  Google Scholar 

  • Friedrich C, Braun H (1992) Generalized cole-cole behavior and its rheological relevance. Rheol Acta 31(4):309–322

    Article  CAS  Google Scholar 

  • Hamley IW (2001) Structure and flow behaviour of block copolymers. J Phys Condens Matter 13(33):R643–R671

    Article  ADS  Google Scholar 

  • Handge UA, Pötschke P (2004) Interplay of rheology and morphology in melt elongation and subsequent recovery of polystyrene/poly(methyl methacrylate) blends. J Rheol 48(5):1103–1122 [Erratum J Rheol 49(6):1553–1553, 2005]

    Article  ADS  CAS  Google Scholar 

  • Handge UA, Schmidheiny W (2007) A tool for rapid quenching of elongated polymer melts. Rheol Acta 46(7):913–919

    Article  CAS  Google Scholar 

  • Heymans N, Bauwens JC (1994) Fractal rheological models and fractional differential-equations for viscoelastic behavior. Rheol Acta 33(3):210–219

    Article  CAS  Google Scholar 

  • Huo YL, Groeninckx G, Moldenaers P (2007) Rheology and morphology of polystyrene/polypropylene blends with in situ compatibilization. Rheol Acta 46(4):507–520

    Article  CAS  Google Scholar 

  • Jeon HK, Kim JK (1998) The effect of the amount of in situ formed copolymers on the final morphology of reactive polymer blends with an in situ compatibilizer. Macromolecules 31(26):9273–9280

    Article  ADS  CAS  Google Scholar 

  • Kitayama N, Keskkula H, Paul DR (2001) Reactive compatibilization of nylon 6/styrene-acrylonitrile copolymer blends Part 3. Tensile stress–strain behavior. Polymer 42(8):3751–3759

    Article  CAS  Google Scholar 

  • Kudva RA, Keskkula H, Paul DR (2000) Properties of compatibilized nylon 6/ABS blends Part ii. Effects of compatibilizer type and processing history. Polymer 41(1):239–258

    Article  CAS  Google Scholar 

  • Majumdar B, Keskkula H, Paul DR, Harvey NG (1994) Control of the morphology of polyamide styrene-acrylonitrile copolymer blends via reactive compatibilizers. Polymer 35(20):4263–4279

    Article  CAS  Google Scholar 

  • Majumdar B, Paul DR, Oshinski AJ (1997) Evolution of morphology in compatibilized vs uncompatibilized polyamide blends. Polymer 38(8):1787–1808

    Article  CAS  Google Scholar 

  • Meissner J, Hostettler J (1994) A new elongational rheometer for polymer melts and other highly viscoelastic liquids. Rheol Acta 33(1):1–21

    Article  CAS  Google Scholar 

  • Moan M, Huitric J, Mederic P, Jarrin J (2000) Rheological properties and reactive compatibilization of immiscible polymer blends. J Rheol 44(6):1227–1245

    Article  ADS  CAS  Google Scholar 

  • Paul DR, Bucknall CB (2000) Polymer blends volume 1: formulation, 2nd edn. Wiley, New York

    Google Scholar 

  • Sailer C, Handge UA (2007a) Melt viscosity, elasticity, and morphology of reactively compatibilized polyamide 6/styrene-acrylonitrile blends in shear and elongation. Macromolecules 40(6):2019–2028

    Article  ADS  CAS  Google Scholar 

  • Sailer C, Handge UA (2007b) Influence of reactive compatibilization on the melt flow properties and morphology of polyamide 6/styrene-acrylonitrile blends. Macromol Symp 254(1):217–225

    CAS  Google Scholar 

  • Sailer C, Handge UA (2008) Reactive blending of polyamide 6 and styrene–acrylonitrile copolymer: influence of blend composition and compatibilizer concentration on morphology and rheology. Macromolecules 41(12):4258–4267

    Article  ADS  CAS  Google Scholar 

  • Scanlan JC, Winter HH (1991) Composition dependence of the viscoelasticity of end-linked poly(dimethylsiloxane) at the gel point. Macromolecules 24(1):47–54

    Article  ADS  CAS  Google Scholar 

  • Schiessel H, Blumen A (1993) Hierarchical analogs to fractional relaxation equations. J Phys A Math Gen 26(19):5057–5069

    Article  ADS  Google Scholar 

  • Schiessel H, Metzler R, Blumen A, Nonnenmacher TF (1995) Generalized viscoelastic models: their fractional equations with solutions. J Phys A Math Gen 28(23):6567–6584

    Article  MATH  ADS  CAS  Google Scholar 

  • Silva J, Machado AV, Maia J (2007) Rheological behavior of compatibilized and non-compatibilized PA 6/EPM blends. Rheol Acta 46(8):1091–1097

    Article  CAS  Google Scholar 

  • Utracki, LA (1989) Polymer alloys and blends, 2nd edn. Hanser, Munich

    Google Scholar 

  • van Duin M, Machado AV, Covas J (2001) A look inside the extruder: evolution of chemistry, morphology and rheology along the extruder axis during reactive processing and blending. Macromol Symp 170:29–39

    Article  Google Scholar 

  • Wagner MH, Bernnat A, Schulze V (1998) The rheology of the Rheotens test. J Rheol 42(4):917–928

    Article  ADS  CAS  Google Scholar 

  • Wagner MH, Bastian H, Bernnat A, Kurzbeck S, Chai CK (2002) Determination of elongational viscosity of polymer melts by RME and Rheotens experiments. Rheol Acta 41:316–325

    Article  CAS  Google Scholar 

  • Watanabe H, Sato T, Osaki K, Aoki Y, Li L, Kakiuchi M, Yao ML (1998) Rheological images of poly(vinyl chloride) gels. 4. Nonlinear behavior in a critical gel state. Macromolecules 31(13):4198–4204

    Article  ADS  CAS  Google Scholar 

  • Weber M, Heckmann W, Goeldel A (2006) Styrenics/polyamide- blends—reactive blending and properties. Macromol Symp 233:1–10

    Article  CAS  Google Scholar 

  • Winter HH, Mours M (1997) Rheology of polymers near liquid-solid transitions. In: Neutron spin echo spectroscopy, viscoelasticity, rheology, Advances in polymer science, vol 134. Springer, Berlin Heidelberg New York, pp 165–234

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to W. Schmidheiny and J. Hostettler for their continuous support of the experimental work and to the Swiss National Science Foundation for the financial grant of this project (No. 200021-103287). They are also indebted to Dr. W. Heckmann for providing the transmission electron micrographs and to Mrs. M.Sc. J. Uhm for the Rheotens experiments. Very valuable discussions with Prof. J. Meissner, Prof. H.C. Öttinger and Mr. M.Sc. Bangarusampath are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich A. Handge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sailer, C., Weber, M., Steininger, H. et al. Grafting of polyamide 6 on a styrene–acrylonitrile maleic anhydride terpolymer: melt rheology at the critical gel state. Rheol Acta 48, 579–588 (2009). https://doi.org/10.1007/s00397-009-0359-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-009-0359-7

Keywords

Navigation