Skip to main content
Log in

Melt shear rheology of carbon nanofiber/polystyrene composites

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The rheological behavior and morphology of carbon nanofiber/polystyrene (CNF/PS) composites in their melt phase have been characterized both through experimental measurements and modeling. Composites prepared in the two different processes of solvent casting and melt blending are contrasted; melt-blended and solvent-cast composites were each prepared with CNF loadings of 2, 5, and 10 wt%. A morphological study revealed that the melt blending process results in composites with shorter CNFs than in the solvent-cast composites, due to damage caused by the higher stresses the CNFs encounter in melt blending, and that both processes retain the diameter of the as-received CNFs. The addition of carbon nanofiber to the polystyrene through either melt blending or solvent casting increases the linear viscoelastic moduli, G′ and G″, and steady-state viscosity, η, in the melt phase monotonically with CNF concentration, more so in solvent cast composites with their longer CNFs. The melt phase of solvent-cast composites with higher CNF concentrations exhibit a plateau of the elastic modulus, G′, at low frequencies, an apparent yield stress, and large first normal stress difference, N 1, at low strain rates, which can be attributed to contact-based network nanostructure formed by the long CNFs. A nanostructurally-based model for CNF/PS composites in their melt phase is presented which considers the composite system as rigid rods in a viscoelastic fluid matrix. Except for two coupling parameters, all material constants in the model for the composite systems are deduced from morphological and shear flow measurements of its separate nanofiber and polymer melt constituents of the composite. These two coupling parameters are polymer–fiber interaction parameter, σ, and interfiber interaction parameter, C I. Through comparison with our experimental measurements of the composite systems, we deduce that σ is effectively 1 (corresponding to no polymer–fiber interaction) for all CNF/PS nanocomposites studied. The dependence of CNF orientation on strain rate which we observe in our experiments is captured in the model by considering the interfiber interaction parameter, C I, as a function of strain rate. Applied to shear flows, the model predicts the melt-phase, steady-state viscosities, and normal stress differences of the CNF/PS composites as functions of shear rate, polymer matrix properties, fiber length, and mass concentration consistent with our experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Advani SG, Tucker CL (1987) The use of tensors to describe and predict fiber orientation in short fiber composites. J Rheol 31(8):751–784

    Article  ADS  Google Scholar 

  • Advani SG, Tucker CL (1990) Closure approximations for three-dimensional structure tensors. J Rheol 34(3):367–386

    Article  ADS  Google Scholar 

  • Azaiez J (1996) Constitutive equations for fiber suspensions in viscoelastic media. J Non-Newton Fluid Mech 66:35–54

    Article  Google Scholar 

  • Baker RTK (1989) Catalytic growth of carbon filaments. Carbon 27(3):315–323

    Article  Google Scholar 

  • Bird RB, Curtiss CF, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids. Wiley, New York

    Google Scholar 

  • Caldeira G, Maia JM, Carneiro OS, Covas JA, Bernardo CA (1998) Production and characterization of innovative carbon fiber–polycarbonate composites. Polym Compos 19(2):147–151

    Article  Google Scholar 

  • Carneiro OS, Maia JM (2000a) Rheological behavior of (short) carbon fiber/thermoplastic composites. Part I: the influence of fiber type, processing conditions and level of incorporation. Polym Compos 21(6):960–969

    Article  Google Scholar 

  • Carneiro OS, Maia JM (2000b) Rheological behavior of (short) carbon fiber/thermoplastic composites. Part II: the influence of matrix type. Polym Compos 21(6):970–977

    Article  Google Scholar 

  • Carneiro OS, Covas JA, Bernardo CA, Caldeira G, Van Hattum FWJ, Ting JM, Alig RL, Lake ML (1998) Production and assessment of polycarbonate composites reinforced with vapor-grown carbon fibers. Compos Sci Technol 58(3–4):401–407

    Article  Google Scholar 

  • Cintra JS, Tucker CL (1995) Orthotropic closure approximation for flow-induced fiber orientation. J Rheol 39(6):1095–1122

    Article  ADS  Google Scholar 

  • Cox WP, Merz EH (1958) Correlation of dynamic and steady viscosities. J Polym Sci 28:619–622

    Article  Google Scholar 

  • Dinh SM, Armstrong RC (1984) A rheological equation of state for semi-concentrated fiber suspensions. J Rheol 28:207–227

    Article  ADS  MATH  Google Scholar 

  • Doi M, Edwards SF (1987) The theory of polymer dynamics. Clarendon, Oxford

    Google Scholar 

  • Doraiswamy D, Mujumdar AN, Tsao I, Beris AN, Danforth SC, Metzner AB (1991) The Cox–Merz rule extended: a rheological model for concentrated suspensions and other materials with a yield stress. J Rheol 35(4):647–685

    Article  ADS  Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  • Folgar F, Tucker CL (1984) Orientation behaviour of fibres in concentrated suspensions. J Reinf Plast Compos 3:98–119

    Article  Google Scholar 

  • Glasgow DG, Jacobsen RL, Burton DJ, Kwag C, Kennel E, Lake ML, Brittain WJ, Rice BP (2003) Carbon nanofiber polymer composites. International SAMPE Symposium and Exhibition

  • Hammel E, Tang X, Trampert M, Schmitt T, Mauthner K, Eder A, Potschke P (2004) Carbon nanofibers for composite applications. Carbon 42(5–6):1153–1158

    Article  Google Scholar 

  • Heremans J (1985) Electrical conductivity of vapor-grown carbon fibers. Carbon 23(4):431–436

    Article  Google Scholar 

  • Heremans J, Beetz CP Jr (1985) Thermal conductivity and thermopower of vapor-grown graphite fibers. Phys Rev B Condens Matter Mater Phys 32(4):1981–1986

    ADS  Google Scholar 

  • Higgins BA, Brittain WJ (2005) Polycarbonate carbon nanofiber composites. Eur Polym J 41(5):889–893

    Article  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  ADS  Google Scholar 

  • Kearns JC, Shambaugh RL (2002) Polypropylene fibers reinforced with carbon nanotubes. J Appl Polym Sci 86(8):2079–2084

    Article  Google Scholar 

  • Kinloch IA, Roberts SA, Windle AH (2002) A rheological study of concentrated aqueous nanotube dispersions. Polymer 43:7483–7491

    Article  Google Scholar 

  • Koyama T (1972) Formation of carbon fibers from benzene. Carbon 10:757

    Article  Google Scholar 

  • Koyama T, Endo M (1973) Structure and growth processes of vapor-grown carbon fibers (in Japanese). Ohyo Butsuri 42:690

    Google Scholar 

  • Krishnamoorti R, Giannelis EP (1997) Rheology of end-tethered polymer layered silicate nanocomposites. Macromolecules 30:4097–4102

    Article  Google Scholar 

  • Krishnamoorti R, Vaia RA, Giannelis EP (1996) Structure and dynamics of polymer-layered silicate nanocomposites. Chem Mater 8(8):1728–1734

    Article  Google Scholar 

  • Kumar S, Doshi H, Srinivasarao M, Park JO, Schiraldi DA (2002) Fibers from polypropylene/nano carbon fiber composites. Polymer 43(5):1701–1703

    Article  Google Scholar 

  • Lake ML, Glasgow DG, Kwag C, Burton DJ (2002) Carbon nanofiber polymer composites: electrical and mechanical properties. International SAMPE Symposium and Exhibition

  • Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, Oxford

    Google Scholar 

  • Larson RG, Winey KI, Patel SS, Watanabe H, Bruinsma R (1993) The rheology of layered liquids: lamellar block copolymers and smectic liquid crystals. Rheol Acta 32:245–253

    Article  Google Scholar 

  • Liu C, Zhang J, He J, Hu G (2003) Gelation in carbon nanotube/polymer composites. Polymer 44(24):7529–7532

    Article  Google Scholar 

  • Lozano K, Barrera EV (2001) Nanofiber-reinforced thermoplastic composites. I. Thermoanalytical and mechanical analyses. J Appl Polym Sci 79:125–133

    Article  Google Scholar 

  • Lozano K, Bonilla-rios J, Barrera EV (2001) A study on nanofiber-reinforced thermoplastic composites (II): investigation of the mixing rheology and conduc-tion properties. J Appl Polym Sci 80:1162–1172

    Article  Google Scholar 

  • Lozano K, Yang S, Zeng Q (2004) Rheological analysis of vapor-grown carbon nanofiber-reinforced polyethylene composites. J Appl Poly Sci 93(1):155–162

    Article  Google Scholar 

  • Ma H, Zeng J, Realff ML, Kumar S, Schiraldi DA (2003) Processing, structure, and properties of fibers from polyester/carbon nanofiber composites. Compos Sci Technol 63(11):1617–1628

    Article  Google Scholar 

  • Macosko CW (1994) Rheology: principles, measurements, and applications. Wiley, New York

    Google Scholar 

  • Patton RD, Pittman CU Jr, Wang L, Hill JR (1999) Vapor grown carbon fiber composites with epoxy and poly(phenylene sulfide) matrices. Compos Part A Appl Sci Manuf 30A(9):1081–1091

    Article  Google Scholar 

  • Pötschke P, Fornes TD, Paul DR (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43:3247–3255

    Article  Google Scholar 

  • Prasse T, Cavaille J-Y, Bauhofer W (2003) Electric anisotropy of carbon nanofibre/epoxy resin composites due to electric field induced alignment. Compos Sci Technol 63(13):1835–1841

    Article  Google Scholar 

  • Richard P, Prasse T, Cavaille JY, Chazeau L, Gauthier C, Duchet J (2003) Reinforcement of rubbery epoxy by carbon nanofibres. Mater Sci Eng A Struct Mater Prop Microstruct Process A352(1–2):344–348

    Google Scholar 

  • Solomon MJ, Almusallam AS, Seefeldt KF, Somwangthanaroj A, Varadan P (2001) Rheology of polypropylene/clay hybrid materials. Macromolecules 34:1864–1872

    Article  Google Scholar 

  • Speck JS, Endo M, Dresselhaus MS (1989) Structure and intercalation of thin benzene derived carbon fibers. J Cryst Growth 94(4):834–848

    Article  ADS  Google Scholar 

  • Tibbetts GG (1983) Carbon fibers produced by pyrolysis of natural gas in stainless steel tubes. Appl Phys Lett 42(8):666–668

    Article  ADS  Google Scholar 

  • Tibbetts GG, Beetz CP Jr (1987) Mechanical properties of vapor-grown carbon fibers. J Phys D Appl Phys 20(3):292–297

    Article  ADS  Google Scholar 

  • Tibbetts GG, McHugh JJ (1999) Mechanical properties of vapor grown carbon fiber composites with thermoplastic matrices. J Mater Res 14:2871–2880

    Article  ADS  Google Scholar 

  • Tibbetts GG, Endo M, Beetz CP Jr (1986) Carbon fibers grown from the vapor phase: a novel material. SAMPE Journal 22(5):30–35, 60

    Google Scholar 

  • Tucker CL (1991) Fiber regimes for fiber suspensions in narrow gaps. J Non-Newton Fluid Mech 39:239–268

    Article  Google Scholar 

  • Van Hattum FWJ, Bernardo CA, Finegan JC, Tibbetts GG, Alig RL, Lake ML (1999) A study of the thermomechanical properties of carbon fiber–polypropylene composites. Polym Compos 20(5):683–688

    Article  Google Scholar 

  • Xu J, Chatterjee S, Koelling KW, Wang Y, Bechtel SE (2005) Shear and extensional rheology of carbon nanofiber suspensions. Rheol Acta 44(6):537–562

    Article  Google Scholar 

  • Ying Z, Du J-H, Bai S, Li F, Liu C, Cheng H-M (2002) Mechanical properties of surfactant-coating carbon nanofiber/epoxy composite. Int J Nanosci 1(5–6):425–430

    Article  Google Scholar 

  • Zhong W-H, Li J, Xu LR, Michel JA, Sullivan LM, Lukehart CM (2004) Graphitic carbon nanofiber (GCNF)/polymer materials. I. GCNF/epoxy monoliths using hexanediamine linker molecules. J Nanosci Nanotechnol 4(7):794–802

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work is funded by the National Science Foundation (Grant No. DMI-0115445).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen E. Bechtel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Xu, J., Bechtel, S.E. et al. Melt shear rheology of carbon nanofiber/polystyrene composites. Rheol Acta 45, 919–941 (2006). https://doi.org/10.1007/s00397-005-0077-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-005-0077-8

Keywords

Navigation