Abstract
In this study, the effect of cellulose nanocrystals (CNCs) on the properties of polylactide (PLA)/poly(butylene adipate-co-terephthalate) (PBAT) blends was investigated. Samples were prepared via (i) solution casting (SC) and (ii) combination of solution casting and melt mixing through twin-screw extruder (mTSE). Scanning electron microscopy images revealed the effect of CNC content on the droplet morphology of PBAT dispersed phase. Rheological analysis showed that 3 wt% of CNC formed a strong network in PLA by SC method. Differential scanning calorimetry results depicted the heterogeneous nucleation effect of CNC on PLA’s crystallization in samples prepared by mTSE. Dynamic mechanical analysis illustrated that CNC enhanced the modulus beyond the glass transition temperature of PLA regardless of the preparation method. The tensile and impact properties also elucidated that the existence of any possible residual solvent in blends could dramatically avoid achievement of improvements in ductility and impact properties.
This is a preview of subscription content, access via your institution.








References
- 1.
Kaplan DL (1998) Biopolymers from renewable resources. Springer
- 2.
Averous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci Polym Rev 44:231–274. https://doi.org/10.1081/MC-200029326
- 3.
Nofar M (2018) Rheological, thermal, and foaming behaviors of different polylactide grades. Int J Mater Sci Res 1:16–22. https://doi.org/10.18689/ijmsr-1000103
- 4.
Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602. https://doi.org/10.1016/j.progpolymsci.2006.03.002
- 5.
Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864. https://doi.org/10.1002/mabi.200400043
- 6.
Mikos AG, Lyman MD, Freed LE, Langer R (1994) Wetting of poly (L-lactic acid) and poly (DL-lactic-co-glycolic acid) foams for tissue culture. Biomaterials 15:55–58. https://doi.org/10.1016/0142-9612(94)90197-X
- 7.
Nofar M, Sacligil D, Carreau PJ, Kamal MR, Heuzey MC (2019) Poly (lactic acid) blends: processing, properties and applications. Int J Biol Macromol 125:307–360. https://doi.org/10.1016/j.ijbiomac.2018.12.002
- 8.
Garlotta D (2001) A literature review of poly (lactic acid). J Polym Environ 9:63–84
- 9.
Tsuji H (2005) Poly (lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5:569–597. https://doi.org/10.1002/mabi.200500062
- 10.
Kakroodi A, Kazemi Y, Nofar M, Park CB (2017) Tailoring poly (lactic acid) for packaging applications via the production of fully bio-based in situ microfibrillar composite films. Chem Eng 308:772–782. https://doi.org/10.1016/j.cej.2016.09.130
- 11.
Nofar M, Park CB (2014) Poly (lactic acid) foaming. Polym Sci 39:1721–1741. https://doi.org/10.1016/j.progpolymsci.2014.04.001
- 12.
Nofar M, Zhu W, Park CB, Randall J (2011) Crystallization kinetics of linear and long-chain-branched polylactide. Ind Eng Chem Res 50:13789–13798. https://doi.org/10.1021/ie2011966
- 13.
Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly (lactic acid) crystallization. Prog Polym Sci 37:1657–1677. https://doi.org/10.1016/j.progpolymsci.2012.07.005
- 14.
Nofar M, Salehiyan R, Sinha Ray S (2019) Rheology of poly (lactic acid)-based systems. Polym Rev 59:465–509. https://doi.org/10.1080/15583724.2019.1572185
- 15.
Nofar M, Park CB (2017) Polylactide foams: fundamentals, manufacturing, and applications. William Andrew
- 16.
Wu D, Wu L, Wu L, Xu BIN, Zhang Y, Zhang M (2007) Nonisothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites. J Polym Sci B Polym Phys 45:1100–1113. https://doi.org/10.1002/polb.21154
- 17.
Eslami H, Kamal MR (2013) Elongational rheology of biodegradable poly (lactic acid)/poly [(butylene succinate) -co-adipate] binary blends and poly (lactic acid)/poly [(butylene succinate) -co-adipate]/clay ternary nanocomposites. J Appl Polym Sci 127:2290–2306. https://doi.org/10.1002/app.37928
- 18.
Nofar M, Maani A, Sojoudi H, Heuzey MC, Carreau PJ (2015) Interfacial and rheological properties of PLA/PBAT and PLA/PBSA blends and their morphological stability under shear flow. J Rheol 59:317–333. https://doi.org/10.1122/1.4905714
- 19.
Wu D, Lin D, Zhang J, Zhou W, Zhang M, Zhang Y, Lin B (2011) Selective localization of nanofillers: effect on morphology and crystallization of PLA/PCL blends. Macromol Chem Phys 212:613–626. https://doi.org/10.1002/macp.201000579
- 20.
Jiang L, Wolcott MP, Zhang J (2006) Study of biodegradable polylactide/poly (butylene adipate-co-terephthalate) blends. Biomacromolecules 7:199–207. https://doi.org/10.1021/bm050581q
- 21.
Herrera R, Franco L, Rodríguez-Galán A, Puiggalí J (2002) Characterization and degradation behavior of poly (butylene adipate-co-terephthalate). J Polym Sci A Polym Chem 40:4141–4157. https://doi.org/10.1002/pola.10501
- 22.
Fukushima K, Wu MH, Bocchini S, Rasyida A, Yang MC (2012) PBAT based nanocomposites for medical and industrial applications. Mater Sci Eng C 32:1331–1351. https://doi.org/10.1016/j.msec.2012.04.005
- 23.
Ko SW, Hong MK, Park BJ, Gupta RK, Choi HJ, Bhattacharya SN (2009) Morphological and rheological characterization of multi-walled carbon nanotube/PLA/PBAT blend nanocomposites. Polym Bull 63:125–134. https://doi.org/10.1007/s00289-009-0072-9
- 24.
Nofar M, Tabatabaei A, Sojoudiasli H, Park CB, Carreau PJ, Heuzey MC, Kamal MR (2017) Mechanical and bead foaming behavior of PLA-PBAT and PLA-PBSA blends with different morphologies. Eur Polym J 90:231–244. https://doi.org/10.1016/j.eurpolymj.2017.03.031
- 25.
Nofar M, Salehiyan R, Ciftci JA, Durmuş A (2020) Ductility improvements of PLA-based binary and ternary blends with controlled morphology using PBAT, PBSA, and nanoclay. Compos Part B: Eng 182:107661. https://doi.org/10.1016/j.compositesb.2019.107661
- 26.
Nofar M, Heuzey MC, Carreau PJ, Kamal MR, Randall J (2016) Coalescence in PLA-PBAT blends under shear flow: effects of blend preparation and PLA molecular weight. J Rheol 60:637–648. https://doi.org/10.1122/1.4953446
- 27.
Nofar M, Oguz H, Ovalı D (2019) Effects of the matrix crystallinity, dispersed phase, and processing type on the morphological, thermal, and mechanical properties of polylactide-based binary blends with poly [(butylene adipate) -co-terephthalate] and poly [(butylene succinate) -co-adipate]. J Appl Polym Sci 136:47636. https://doi.org/10.1002/app.47636
- 28.
Moustafa H, El Kissi N, Abou-Kandil AI, Abdel-Aziz MS, Dufresne A (2017) PLA/PBAT bionanocomposites with antimicrobial natural rosin for green packaging. ACS Appl Mater Interfaces 9:20132–20141. https://doi.org/10.1021/acsami.7b05557
- 29.
Mittal V, Luckachan GE, Chernev B, Matsko NB (2015) Bio-polyester–date seed powder composites: morphology and component migration. Polym Eng Sci 55:877–888. https://doi.org/10.1002/pen.23955
- 30.
Ai X, Li X, Yu Y, Pan H, Yang J, Wang D, Yang H, Zhang H, Dong L (2019) The mechanical, thermal, rheological and morphological properties of PLA/PBAT blown films by using Bis (tert-butyl dioxy isopropyl) benzene as crosslinking agent. Polym Eng Sci 59:E227–E236. https://doi.org/10.1002/pen.24927
- 31.
Kilic NT, Can BN, Kodal M, Ozkoc G (2020) The potential use of epoxy-POSS as a reactive hybrid compatibilizers for PLA/PBAT blends:“effect of PBAT molecular weight and POSS type”. Polym Eng Sci 60:398–413. https://doi.org/10.1002/pen.25295
- 32.
Li X, Yan X, Yang J, Pan H, Gao G, Zhang H, Dong L (2018) Improvement of compatibility and mechanical properties of the poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends and films by reactive extrusion with chain extender. Polym Eng Sci 58:1868–1878. https://doi.org/10.1002/pen.24795
- 33.
Yuan H, Liu Z, Ren J (2009) Preparation, characterization, and foaming behavior of poly (lactic acid)/poly (butylene adipate-co-butylene terephthalate) blend. Polym Eng Sci 49:1004–1012. https://doi.org/10.1002/pen.21287
- 34.
Lee HS, Fasulo PD, Rodgers WR, Paul DR (2005) TPO based nanocomposites. Part 1. Morphology and mechanical properties. Polymer 46:11673–11689. https://doi.org/10.1016/j.polymer.2005.09.068
- 35.
Göldel A, Kasaliwal G, Pötschke P (2009) Selective localization and migration of multiwalled carbon nanotubes in blends of polycarbonate and poly (styrene-acrylonitrile). Macromol Rapid Commun 30:423–429. https://doi.org/10.1002/marc.200800549
- 36.
Taguet A, Cassagnau P, Lopez-Cuesta JM (2014) Structuration, selective dispersion and compatibilizing effect of (nano) fillers in polymer blends. Prog Polym Sci 39:1526–1563. https://doi.org/10.1016/j.progpolymsci.2014.04.002
- 37.
Salehiyan R, Nofar M, Makwakwa D, Ray SS (2020) Shear-induced carbon nanotube migration and morphological development in polylactide/poly (vinylidene fluoride) blend nanocomposites and their impact on dielectric constants and rheological properties. J Phys Chem C 124:9536–9547. https://doi.org/10.1021/acs.jpcc.0c00891
- 38.
Salehiyan R, Nofar M, Ray SS, Ojijo V (2019) Kinetically controlled localization of carbon nanotubes in polylactide/poly (vinylidene fluoride) blend nanocomposites and their influence on electromagnetic interference shielding, electrical conductivity, and rheological properties. J Phys Chem C 123:19195–19207. https://doi.org/10.1021/acs.jpcc.9b04494
- 39.
Nofar M, Heuzey MC, Carreau PJ, Kamal MR (2020) Nanoparticle interactions and molecular relaxation in PLA/PBAT/nanoclay blends. Exp Results 1-e47:1–12. https://doi.org/10.1017/exp.2020.54
- 40.
Nofar M, Heuzey MC, Carreau PJ, Kamal MR (2016) Effects of nanoclay and its localization on the morphology stabilization of PLA/PBAT blends under shear flow. Polymer 98:353–364. https://doi.org/10.1016/j.polymer.2016.06.044
- 41.
Jiang L, Liu B, Zhang J (2009) Properties of poly (lactic acid)/poly (butylene adipate-co-terephthalate)/nanoparticle ternary composites. Ind Eng Chem Res 48:7594–7602. https://doi.org/10.1021/ie900576f
- 42.
Mohapatra AK, Mohanty S, Nayak SK (2014) Study of thermo-mechanical and morphological behaviour of biodegradable PLA/PBAT/layered silicate blend nanocomposites. J Polym Environ 22:398–408. https://doi.org/10.1007/s10924-014-0639-x
- 43.
Adrar S, Habi A, Ajji A, Grohens Y (2018) Synergistic effects in epoxy functionalized graphene and modified organo-montmorillonite PLA/PBAT blends. Appl Clay Sci 157:65–75. https://doi.org/10.1016/j.clay.2018.02.028
- 44.
Girdthep S, Komrapit N, Molloy R, Lumyong S, Punyodom W, Worajittiphon P (2015) Effect of plate-like particles on properties of poly (lactic acid)/poly (butylene adipate-co-terephthalate) blend: a comparative study between modified montmorillonite and graphene nanoplatelets. Compos Sci Technol 119:115–123. https://doi.org/10.1016/j.compscitech.2015.10.005
- 45.
Kumar M, Mohanty S, Nayak SK, Parvaiz MR (2010) Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites. Bioresour Technol 101:8406–8415. https://doi.org/10.1016/j.biortech.2010.05.075
- 46.
Shahlari M, Lee S (2012) Mechanical and morphological properties of poly (butylene adipate-co-terephthalate) and poly (lactic acid) blended with organically modified silicate layers. Polym Eng Sci 52:1420–1428. https://doi.org/10.1002/pen.23082
- 47.
Urquijo J, Aranburu N, Dagréou S, Guerrica-Echevarría G, Eguiazábal JI (2017) CNT-induced morphology and its effect on properties in PLA/PBAT-based nanocomposites. Eur Polym J 93:545–555. https://doi.org/10.1016/j.eurpolymj.2017.06.035
- 48.
Dil EJ, Favis BD (2015) Localization of micro-and nano-silica particles in heterophase poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends. Polymer 76:295–306. https://doi.org/10.1016/j.polymer.2015.08.046
- 49.
Dil EJ, Virgilio N, Favis BD (2016) The effect of the interfacial assembly of nano-silica in poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends on morphology, rheology and mechanical properties. Eur Polym J 85:635–646. https://doi.org/10.1016/j.eurpolymj.2016.07.022
- 50.
Salehiyan R, Nofar M, Malkappa K, Ray SS (2020) Effect of nanofillers characteristics and their selective localization on morphology development and rheological properties of melt-processed polylactide/poly (butylene adipate-co-terephthalate) blend composites. Polym Eng Sci 60(11):2749–2760. https://doi.org/10.1002/pen.25505
- 51.
Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. https://doi.org/10.1021/cr900339w
- 52.
Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626. https://doi.org/10.1021/bm0493685
- 53.
Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994
- 54.
Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part A Appl Sci Manuf 83:2–18. https://doi.org/10.1016/j.compositesa.2015.10.041
- 55.
Vatansever E, Arslan D, Nofar M (2019) Polylactide cellulose-based nanocomposites. Int J Biol Macromol 137:912–938. https://doi.org/10.1016/j.ijbiomac.2019.06.205
- 56.
Kamal MR, Khoshkava V (2015) Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites. Carbohydr Polym 123:105–114. https://doi.org/10.1016/j.carbpol.2015.01.012
- 57.
Bagheriasl D, Carreau PJ, Riedl B, Dubois C, Hamad WY (2016) Shear rheology of polylactide (PLA)–cellulose nanocrystal (CNC) nanocomposites. Cellulose 23:1885–1897. https://doi.org/10.1007/s10570-016-0914-1
- 58.
Bagheriasl D, Carreau PJ, Riedl B, Dubois C (2018) Enhanced properties of polylactide by incorporating cellulose nanocrystals. Polym Compos 39:2685–2694. https://doi.org/10.1002/pc.24259
- 59.
Bagheriasl D, Safdari F, Carreau PJ, Dubois C, Riedl B (2019) Development of cellulose nanocrystal-reinforced polylactide: a comparative study on different preparation methods. Polym Compos 40:E342–E349. https://doi.org/10.1002/pc.24676
- 60.
Ferreira FV, Mariano M, Pinheiro IF, Cazalini EM, Souza DHS, Lepesqueur LSS, Koga-Ito CY, Gouveia RF, Lona LMF (2019) Cellulose nanocrystal-based poly (butylene adipate-co-terephthalate) nanocomposites covered with antimicrobial silver thin films. Polym Eng Sci 59:E356–E365. https://doi.org/10.1002/pen.25066
- 61.
Kargarzadeh H, Mariano M, Huang J, Lin N, Ahmad I, Dufresne A, Thomas S (2017) Recent developments on nanocellulose reinforced polymer nanocomposites: A review. Polymer 132:368–393. https://doi.org/10.1016/j.polymer.2017.09.043
- 62.
Ferreira FV, Cividanes LS, Gouveia RF, Lona LM (2019) An overview on properties and applications of poly (butylene adipate-co-terephthalate)–PBAT based composites. Polym Eng Sci 59:E7–E15. https://doi.org/10.1002/pen.24770
- 63.
Vatansever E, Arslan D, Sarul DS, Kahraman Y, Gunes G, Durmus A, Nofar M (2020) Development of CNC-reinforced PBAT nanocomposites with reduced percolation threshold: a comparative study on the preparation method. J Mater Sci 55:15523–15537. https://doi.org/10.1007/s10853-020-05105-4
- 64.
Arslan D, Vatansever E, Sarul DS, Kahraman Y, Gunes G, Durmus A, Nofar M (2020) Effect of preparation method on the properties of polylactide/cellulose nanocrystal nanocomposites. Polym Compos 41:4170–4180. https://doi.org/10.1002/pc.25701
- 65.
Vatansever E, Arslan D, Sarul DS, Kahraman Y, Nofar M (2020) Effects of molecular weight and crystallizability of polylactide on the cellulose nanocrystal dispersion quality in their nanocomposites. Int J Biol Macromol 154:276–290. https://doi.org/10.1016/j.ijbiomac.2020.03.115
- 66.
Arrieta MP, Fortunati E, Dominici F, Rayón E, López J, Kenny JM (2014) Multifunctional PLA–PHB/cellulose nanocrystal films: processing, structural and thermal properties. Carbohydr Polym 107:16–24. https://doi.org/10.1016/j.carbpol.2014.02.044
- 67.
Arrieta MP, Fortunati E, Dominici F, López J, Kenny JM (2015) Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends. Carbohydr Polym 121:265–275. https://doi.org/10.1016/j.carbpol.2014.12.056
- 68.
Motloung MP, Ojijo V, Bandyopadhyay J, Ray SS (2020) Morphological characteristics and thermal, rheological, and mechanical properties of cellulose nanocrystals-containing biodegradable poly (lactic acid)/poly (ε-caprolactone) blend composites. J Appl Polym Sci 137:48665. https://doi.org/10.1002/app.48665
- 69.
Bitinis N, Fortunati E, Verdejo R, Bras J, Kenny JM, Torre L, López-Manchado MA (2013) Poly (lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites. Part II: Properties evaluation. Carbohydr Polym 96:621–627. https://doi.org/10.1016/j.carbpol.2013.03.091
- 70.
Bitinis N, Verdejo R, Bras J, Fortunati E, Kenny JM, Torre L, López-Manchado MA (2013) Poly (lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites Part I. Processing and morphology. Carbohydr Polym 96:611–620. https://doi.org/10.1016/j.carbpol.2013.02.068
- 71.
Heshmati V, Kamal MR, Favis BD (2018) Tuning the localization of finely dispersed cellulose nanocrystal in poly (lactic acid)/bio-polyamide11 blends. J Polym Sci B Polym Phys 56:576–587. https://doi.org/10.1002/polb.24563
- 72.
Heshmati V, Kamal MR, Favis BD (2018) Cellulose nanocrystal in poly (lactic acid)/polyamide11 blends: preparation, morphology and co-continuity. Eur Polym J 98:11–20. https://doi.org/10.1016/j.eurpolymj.2017.10.027
- 73.
Pracella M, Haque MMU, Puglia D (2014) Morphology and properties tuning of PLA/cellulose nanocrystals bio-nanocomposites by means of reactive functionalization and blending with PVAc. Polymer 55:3720–3728. https://doi.org/10.1016/j.polymer.2014.06.071
- 74.
Ma P, Jiang L, Yu M, Dong W, Chen M (2016) Green antibacterial nanocomposites from poly (lactide)/poly (butylene adipate-co-terephthalate)/nanocrystal cellulose–silver nanohybrids. ACS Sustain Chem Eng 4:6417–6426. https://doi.org/10.1021/acssuschemeng.6b01106
- 75.
Yasuniwa M, Tsubakihara S, Iura K, Ono Y, Dan Y, Takahashi K (2006) Crystallization behavior of poly (L-lactic acid). Polymer 47:7554–7563. https://doi.org/10.1016/j.polymer.2006.08.054
- 76.
Khoshkava V, Kamal MR (2013) Effect of surface energy on dispersion and mechanical properties of polymer/nanocrystalline cellulose nanocomposites. Biomacromolecules 14:3155–3163. https://doi.org/10.1021/bm400784j
- 77.
Fenouillot F, Cassagnau P, Majesté JC (2009) Uneven distribution of nanoparticles in immiscible fluids: morphology development in polymer blends. Polymer 50:1333–1350. https://doi.org/10.1016/j.polymer.2008.12.029
- 78.
Kontopoulou M, Liu Y, Austin JR, Parent JS (2007) The dynamics of montmorillonite clay dispersion and morphology development in immiscible ethylene–propylene rubber/polypropylene blends. Polymer 48:4520–4528. https://doi.org/10.1016/j.polymer.2007.05.068
- 79.
Hong JS, Namkung H, Ahn KH, Lee SJ, Kim C (2006) The role of organically modified layered silicate in the breakup and coalescence of droplets in PBT/PE blends. Polymer 47:3967–3975. https://doi.org/10.1016/j.polymer.2006.03.077
- 80.
Bagheriasl D, Carreau PJ, Dubois C, Riedl B (2015) Properties of polypropylene and polypropylene/poly (ethylene-co-vinyl alcohol) blend/CNC nanocomposites. Compos Sci Technol 117:357–363. https://doi.org/10.1016/j.compscitech.2015.07.012
- 81.
Shi X, Qin J, Wang L, Ren L, Rong F, Li D, Wang R, Zhang G (2018) Introduction of stereocomplex crystallites of PLA for the solid and microcellular poly (lactide)/poly (butylene adipate-co-terephthalate) blends. RSC Adv 8:11850–11861. https://doi.org/10.1039/c8ra01570h
- 82.
Nofar M, Mohammadi M, Carreau PJ (2020) Effect of TPU hard segment content on the rheological and mechanical properties of PLA/TPU blends. J Appl Polym Sci 137(45):49387. https://doi.org/10.1002/app.49387
- 83.
Kahraman Y, Ozdemir B, Kilic V, Alkan Goksu Y, Nofar M (2021) Super toughened and highly ductile PLA/TPU blend systems by in situ reactive interfacial compatibilization using multifunctional epoxy based chain extender. J Appl Polym Sci:50457. https://doi.org/10.1002/app.50457
Acknowledgments
The authors would also like to sincerely thank Professor Seniha Fatma Guner, our TUBITAK 1001 project consultant, and Professor Metin Hayri Acar for providing us their lab space to, respectively, run rheological and DSC experiments.
Funding
The author would like to acknowledge the financial supports by the Scientific and Technological Research Council of Turkey (TUBITAK) in the context of 1001 project with the project number of 117 M238.
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Sarul, D.S., Arslan, D., Vatansever, E. et al. Preparation and characterization of PLA/PBAT/CNC blend nanocomposites. Colloid Polym Sci (2021). https://doi.org/10.1007/s00396-021-04822-9
Received:
Revised:
Accepted:
Published:
Keywords
- PLA
- PBAT
- CNC
- Blend
- Nanocomposite
- Processing
- Morphology
- Rheology