Preparation and characterization of PLA/PBAT/CNC blend nanocomposites

Abstract

In this study, the effect of cellulose nanocrystals (CNCs) on the properties of polylactide (PLA)/poly(butylene adipate-co-terephthalate) (PBAT) blends was investigated. Samples were prepared via (i) solution casting (SC) and (ii) combination of solution casting and melt mixing through twin-screw extruder (mTSE). Scanning electron microscopy images revealed the effect of CNC content on the droplet morphology of PBAT dispersed phase. Rheological analysis showed that 3 wt% of CNC formed a strong network in PLA by SC method. Differential scanning calorimetry results depicted the heterogeneous nucleation effect of CNC on PLA’s crystallization in samples prepared by mTSE. Dynamic mechanical analysis illustrated that CNC enhanced the modulus beyond the glass transition temperature of PLA regardless of the preparation method. The tensile and impact properties also elucidated that the existence of any possible residual solvent in blends could dramatically avoid achievement of improvements in ductility and impact properties.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Kaplan DL (1998) Biopolymers from renewable resources. Springer

  2. 2.

    Averous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci Polym Rev 44:231–274. https://doi.org/10.1081/MC-200029326

    CAS  Article  Google Scholar 

  3. 3.

    Nofar M (2018) Rheological, thermal, and foaming behaviors of different polylactide grades. Int J Mater Sci Res 1:16–22. https://doi.org/10.18689/ijmsr-1000103

    Article  Google Scholar 

  4. 4.

    Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602. https://doi.org/10.1016/j.progpolymsci.2006.03.002

    CAS  Article  Google Scholar 

  5. 5.

    Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864. https://doi.org/10.1002/mabi.200400043

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Mikos AG, Lyman MD, Freed LE, Langer R (1994) Wetting of poly (L-lactic acid) and poly (DL-lactic-co-glycolic acid) foams for tissue culture. Biomaterials 15:55–58. https://doi.org/10.1016/0142-9612(94)90197-X

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Nofar M, Sacligil D, Carreau PJ, Kamal MR, Heuzey MC (2019) Poly (lactic acid) blends: processing, properties and applications. Int J Biol Macromol 125:307–360. https://doi.org/10.1016/j.ijbiomac.2018.12.002

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Garlotta D (2001) A literature review of poly (lactic acid). J Polym Environ 9:63–84

    CAS  Article  Google Scholar 

  9. 9.

    Tsuji H (2005) Poly (lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5:569–597. https://doi.org/10.1002/mabi.200500062

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Kakroodi A, Kazemi Y, Nofar M, Park CB (2017) Tailoring poly (lactic acid) for packaging applications via the production of fully bio-based in situ microfibrillar composite films. Chem Eng 308:772–782. https://doi.org/10.1016/j.cej.2016.09.130

    CAS  Article  Google Scholar 

  11. 11.

    Nofar M, Park CB (2014) Poly (lactic acid) foaming. Polym Sci 39:1721–1741. https://doi.org/10.1016/j.progpolymsci.2014.04.001

    CAS  Article  Google Scholar 

  12. 12.

    Nofar M, Zhu W, Park CB, Randall J (2011) Crystallization kinetics of linear and long-chain-branched polylactide. Ind Eng Chem Res 50:13789–13798. https://doi.org/10.1021/ie2011966

    CAS  Article  Google Scholar 

  13. 13.

    Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly (lactic acid) crystallization. Prog Polym Sci 37:1657–1677. https://doi.org/10.1016/j.progpolymsci.2012.07.005

    CAS  Article  Google Scholar 

  14. 14.

    Nofar M, Salehiyan R, Sinha Ray S (2019) Rheology of poly (lactic acid)-based systems. Polym Rev 59:465–509. https://doi.org/10.1080/15583724.2019.1572185

    CAS  Article  Google Scholar 

  15. 15.

    Nofar M, Park CB (2017) Polylactide foams: fundamentals, manufacturing, and applications. William Andrew

  16. 16.

    Wu D, Wu L, Wu L, Xu BIN, Zhang Y, Zhang M (2007) Nonisothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites. J Polym Sci B Polym Phys 45:1100–1113. https://doi.org/10.1002/polb.21154

    CAS  Article  Google Scholar 

  17. 17.

    Eslami H, Kamal MR (2013) Elongational rheology of biodegradable poly (lactic acid)/poly [(butylene succinate) -co-adipate] binary blends and poly (lactic acid)/poly [(butylene succinate) -co-adipate]/clay ternary nanocomposites. J Appl Polym Sci 127:2290–2306. https://doi.org/10.1002/app.37928

    CAS  Article  Google Scholar 

  18. 18.

    Nofar M, Maani A, Sojoudi H, Heuzey MC, Carreau PJ (2015) Interfacial and rheological properties of PLA/PBAT and PLA/PBSA blends and their morphological stability under shear flow. J Rheol 59:317–333. https://doi.org/10.1122/1.4905714

    CAS  Article  Google Scholar 

  19. 19.

    Wu D, Lin D, Zhang J, Zhou W, Zhang M, Zhang Y, Lin B (2011) Selective localization of nanofillers: effect on morphology and crystallization of PLA/PCL blends. Macromol Chem Phys 212:613–626. https://doi.org/10.1002/macp.201000579

    CAS  Article  Google Scholar 

  20. 20.

    Jiang L, Wolcott MP, Zhang J (2006) Study of biodegradable polylactide/poly (butylene adipate-co-terephthalate) blends. Biomacromolecules 7:199–207. https://doi.org/10.1021/bm050581q

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Herrera R, Franco L, Rodríguez-Galán A, Puiggalí J (2002) Characterization and degradation behavior of poly (butylene adipate-co-terephthalate). J Polym Sci A Polym Chem 40:4141–4157. https://doi.org/10.1002/pola.10501

    CAS  Article  Google Scholar 

  22. 22.

    Fukushima K, Wu MH, Bocchini S, Rasyida A, Yang MC (2012) PBAT based nanocomposites for medical and industrial applications. Mater Sci Eng C 32:1331–1351. https://doi.org/10.1016/j.msec.2012.04.005

    CAS  Article  Google Scholar 

  23. 23.

    Ko SW, Hong MK, Park BJ, Gupta RK, Choi HJ, Bhattacharya SN (2009) Morphological and rheological characterization of multi-walled carbon nanotube/PLA/PBAT blend nanocomposites. Polym Bull 63:125–134. https://doi.org/10.1007/s00289-009-0072-9

    CAS  Article  Google Scholar 

  24. 24.

    Nofar M, Tabatabaei A, Sojoudiasli H, Park CB, Carreau PJ, Heuzey MC, Kamal MR (2017) Mechanical and bead foaming behavior of PLA-PBAT and PLA-PBSA blends with different morphologies. Eur Polym J 90:231–244. https://doi.org/10.1016/j.eurpolymj.2017.03.031

    CAS  Article  Google Scholar 

  25. 25.

    Nofar M, Salehiyan R, Ciftci JA, Durmuş A (2020) Ductility improvements of PLA-based binary and ternary blends with controlled morphology using PBAT, PBSA, and nanoclay. Compos Part B: Eng 182:107661. https://doi.org/10.1016/j.compositesb.2019.107661

    CAS  Article  Google Scholar 

  26. 26.

    Nofar M, Heuzey MC, Carreau PJ, Kamal MR, Randall J (2016) Coalescence in PLA-PBAT blends under shear flow: effects of blend preparation and PLA molecular weight. J Rheol 60:637–648. https://doi.org/10.1122/1.4953446

    CAS  Article  Google Scholar 

  27. 27.

    Nofar M, Oguz H, Ovalı D (2019) Effects of the matrix crystallinity, dispersed phase, and processing type on the morphological, thermal, and mechanical properties of polylactide-based binary blends with poly [(butylene adipate) -co-terephthalate] and poly [(butylene succinate) -co-adipate]. J Appl Polym Sci 136:47636. https://doi.org/10.1002/app.47636

    CAS  Article  Google Scholar 

  28. 28.

    Moustafa H, El Kissi N, Abou-Kandil AI, Abdel-Aziz MS, Dufresne A (2017) PLA/PBAT bionanocomposites with antimicrobial natural rosin for green packaging. ACS Appl Mater Interfaces 9:20132–20141. https://doi.org/10.1021/acsami.7b05557

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Mittal V, Luckachan GE, Chernev B, Matsko NB (2015) Bio-polyester–date seed powder composites: morphology and component migration. Polym Eng Sci 55:877–888. https://doi.org/10.1002/pen.23955

    CAS  Article  Google Scholar 

  30. 30.

    Ai X, Li X, Yu Y, Pan H, Yang J, Wang D, Yang H, Zhang H, Dong L (2019) The mechanical, thermal, rheological and morphological properties of PLA/PBAT blown films by using Bis (tert-butyl dioxy isopropyl) benzene as crosslinking agent. Polym Eng Sci 59:E227–E236. https://doi.org/10.1002/pen.24927

    CAS  Article  Google Scholar 

  31. 31.

    Kilic NT, Can BN, Kodal M, Ozkoc G (2020) The potential use of epoxy-POSS as a reactive hybrid compatibilizers for PLA/PBAT blends:“effect of PBAT molecular weight and POSS type”. Polym Eng Sci 60:398–413. https://doi.org/10.1002/pen.25295

    CAS  Article  Google Scholar 

  32. 32.

    Li X, Yan X, Yang J, Pan H, Gao G, Zhang H, Dong L (2018) Improvement of compatibility and mechanical properties of the poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends and films by reactive extrusion with chain extender. Polym Eng Sci 58:1868–1878. https://doi.org/10.1002/pen.24795

    CAS  Article  Google Scholar 

  33. 33.

    Yuan H, Liu Z, Ren J (2009) Preparation, characterization, and foaming behavior of poly (lactic acid)/poly (butylene adipate-co-butylene terephthalate) blend. Polym Eng Sci 49:1004–1012. https://doi.org/10.1002/pen.21287

    CAS  Article  Google Scholar 

  34. 34.

    Lee HS, Fasulo PD, Rodgers WR, Paul DR (2005) TPO based nanocomposites. Part 1. Morphology and mechanical properties. Polymer 46:11673–11689. https://doi.org/10.1016/j.polymer.2005.09.068

    CAS  Article  Google Scholar 

  35. 35.

    Göldel A, Kasaliwal G, Pötschke P (2009) Selective localization and migration of multiwalled carbon nanotubes in blends of polycarbonate and poly (styrene-acrylonitrile). Macromol Rapid Commun 30:423–429. https://doi.org/10.1002/marc.200800549

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Taguet A, Cassagnau P, Lopez-Cuesta JM (2014) Structuration, selective dispersion and compatibilizing effect of (nano) fillers in polymer blends. Prog Polym Sci 39:1526–1563. https://doi.org/10.1016/j.progpolymsci.2014.04.002

    CAS  Article  Google Scholar 

  37. 37.

    Salehiyan R, Nofar M, Makwakwa D, Ray SS (2020) Shear-induced carbon nanotube migration and morphological development in polylactide/poly (vinylidene fluoride) blend nanocomposites and their impact on dielectric constants and rheological properties. J Phys Chem C 124:9536–9547. https://doi.org/10.1021/acs.jpcc.0c00891

    CAS  Article  Google Scholar 

  38. 38.

    Salehiyan R, Nofar M, Ray SS, Ojijo V (2019) Kinetically controlled localization of carbon nanotubes in polylactide/poly (vinylidene fluoride) blend nanocomposites and their influence on electromagnetic interference shielding, electrical conductivity, and rheological properties. J Phys Chem C 123:19195–19207. https://doi.org/10.1021/acs.jpcc.9b04494

    CAS  Article  Google Scholar 

  39. 39.

    Nofar M, Heuzey MC, Carreau PJ, Kamal MR (2020) Nanoparticle interactions and molecular relaxation in PLA/PBAT/nanoclay blends. Exp Results 1-e47:1–12. https://doi.org/10.1017/exp.2020.54

    Article  Google Scholar 

  40. 40.

    Nofar M, Heuzey MC, Carreau PJ, Kamal MR (2016) Effects of nanoclay and its localization on the morphology stabilization of PLA/PBAT blends under shear flow. Polymer 98:353–364. https://doi.org/10.1016/j.polymer.2016.06.044

    CAS  Article  Google Scholar 

  41. 41.

    Jiang L, Liu B, Zhang J (2009) Properties of poly (lactic acid)/poly (butylene adipate-co-terephthalate)/nanoparticle ternary composites. Ind Eng Chem Res 48:7594–7602. https://doi.org/10.1021/ie900576f

    CAS  Article  Google Scholar 

  42. 42.

    Mohapatra AK, Mohanty S, Nayak SK (2014) Study of thermo-mechanical and morphological behaviour of biodegradable PLA/PBAT/layered silicate blend nanocomposites. J Polym Environ 22:398–408. https://doi.org/10.1007/s10924-014-0639-x

    CAS  Article  Google Scholar 

  43. 43.

    Adrar S, Habi A, Ajji A, Grohens Y (2018) Synergistic effects in epoxy functionalized graphene and modified organo-montmorillonite PLA/PBAT blends. Appl Clay Sci 157:65–75. https://doi.org/10.1016/j.clay.2018.02.028

    CAS  Article  Google Scholar 

  44. 44.

    Girdthep S, Komrapit N, Molloy R, Lumyong S, Punyodom W, Worajittiphon P (2015) Effect of plate-like particles on properties of poly (lactic acid)/poly (butylene adipate-co-terephthalate) blend: a comparative study between modified montmorillonite and graphene nanoplatelets. Compos Sci Technol 119:115–123. https://doi.org/10.1016/j.compscitech.2015.10.005

    CAS  Article  Google Scholar 

  45. 45.

    Kumar M, Mohanty S, Nayak SK, Parvaiz MR (2010) Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites. Bioresour Technol 101:8406–8415. https://doi.org/10.1016/j.biortech.2010.05.075

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Shahlari M, Lee S (2012) Mechanical and morphological properties of poly (butylene adipate-co-terephthalate) and poly (lactic acid) blended with organically modified silicate layers. Polym Eng Sci 52:1420–1428. https://doi.org/10.1002/pen.23082

    CAS  Article  Google Scholar 

  47. 47.

    Urquijo J, Aranburu N, Dagréou S, Guerrica-Echevarría G, Eguiazábal JI (2017) CNT-induced morphology and its effect on properties in PLA/PBAT-based nanocomposites. Eur Polym J 93:545–555. https://doi.org/10.1016/j.eurpolymj.2017.06.035

    CAS  Article  Google Scholar 

  48. 48.

    Dil EJ, Favis BD (2015) Localization of micro-and nano-silica particles in heterophase poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends. Polymer 76:295–306. https://doi.org/10.1016/j.polymer.2015.08.046

    CAS  Article  Google Scholar 

  49. 49.

    Dil EJ, Virgilio N, Favis BD (2016) The effect of the interfacial assembly of nano-silica in poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends on morphology, rheology and mechanical properties. Eur Polym J 85:635–646. https://doi.org/10.1016/j.eurpolymj.2016.07.022

    CAS  Article  Google Scholar 

  50. 50.

    Salehiyan R, Nofar M, Malkappa K, Ray SS (2020) Effect of nanofillers characteristics and their selective localization on morphology development and rheological properties of melt-processed polylactide/poly (butylene adipate-co-terephthalate) blend composites. Polym Eng Sci 60(11):2749–2760. https://doi.org/10.1002/pen.25505

    CAS  Article  Google Scholar 

  51. 51.

    Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. https://doi.org/10.1021/cr900339w

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626. https://doi.org/10.1021/bm0493685

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    CAS  Article  Google Scholar 

  54. 54.

    Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part A Appl Sci Manuf 83:2–18. https://doi.org/10.1016/j.compositesa.2015.10.041

    CAS  Article  Google Scholar 

  55. 55.

    Vatansever E, Arslan D, Nofar M (2019) Polylactide cellulose-based nanocomposites. Int J Biol Macromol 137:912–938. https://doi.org/10.1016/j.ijbiomac.2019.06.205

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Kamal MR, Khoshkava V (2015) Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites. Carbohydr Polym 123:105–114. https://doi.org/10.1016/j.carbpol.2015.01.012

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Bagheriasl D, Carreau PJ, Riedl B, Dubois C, Hamad WY (2016) Shear rheology of polylactide (PLA)–cellulose nanocrystal (CNC) nanocomposites. Cellulose 23:1885–1897. https://doi.org/10.1007/s10570-016-0914-1

    CAS  Article  Google Scholar 

  58. 58.

    Bagheriasl D, Carreau PJ, Riedl B, Dubois C (2018) Enhanced properties of polylactide by incorporating cellulose nanocrystals. Polym Compos 39:2685–2694. https://doi.org/10.1002/pc.24259

    CAS  Article  Google Scholar 

  59. 59.

    Bagheriasl D, Safdari F, Carreau PJ, Dubois C, Riedl B (2019) Development of cellulose nanocrystal-reinforced polylactide: a comparative study on different preparation methods. Polym Compos 40:E342–E349. https://doi.org/10.1002/pc.24676

    CAS  Article  Google Scholar 

  60. 60.

    Ferreira FV, Mariano M, Pinheiro IF, Cazalini EM, Souza DHS, Lepesqueur LSS, Koga-Ito CY, Gouveia RF, Lona LMF (2019) Cellulose nanocrystal-based poly (butylene adipate-co-terephthalate) nanocomposites covered with antimicrobial silver thin films. Polym Eng Sci 59:E356–E365. https://doi.org/10.1002/pen.25066

    CAS  Article  Google Scholar 

  61. 61.

    Kargarzadeh H, Mariano M, Huang J, Lin N, Ahmad I, Dufresne A, Thomas S (2017) Recent developments on nanocellulose reinforced polymer nanocomposites: A review. Polymer 132:368–393. https://doi.org/10.1016/j.polymer.2017.09.043

    CAS  Article  Google Scholar 

  62. 62.

    Ferreira FV, Cividanes LS, Gouveia RF, Lona LM (2019) An overview on properties and applications of poly (butylene adipate-co-terephthalate)–PBAT based composites. Polym Eng Sci 59:E7–E15. https://doi.org/10.1002/pen.24770

    CAS  Article  Google Scholar 

  63. 63.

    Vatansever E, Arslan D, Sarul DS, Kahraman Y, Gunes G, Durmus A, Nofar M (2020) Development of CNC-reinforced PBAT nanocomposites with reduced percolation threshold: a comparative study on the preparation method. J Mater Sci 55:15523–15537. https://doi.org/10.1007/s10853-020-05105-4

    CAS  Article  Google Scholar 

  64. 64.

    Arslan D, Vatansever E, Sarul DS, Kahraman Y, Gunes G, Durmus A, Nofar M (2020) Effect of preparation method on the properties of polylactide/cellulose nanocrystal nanocomposites. Polym Compos 41:4170–4180. https://doi.org/10.1002/pc.25701

    CAS  Article  Google Scholar 

  65. 65.

    Vatansever E, Arslan D, Sarul DS, Kahraman Y, Nofar M (2020) Effects of molecular weight and crystallizability of polylactide on the cellulose nanocrystal dispersion quality in their nanocomposites. Int J Biol Macromol 154:276–290. https://doi.org/10.1016/j.ijbiomac.2020.03.115

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Arrieta MP, Fortunati E, Dominici F, Rayón E, López J, Kenny JM (2014) Multifunctional PLA–PHB/cellulose nanocrystal films: processing, structural and thermal properties. Carbohydr Polym 107:16–24. https://doi.org/10.1016/j.carbpol.2014.02.044

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Arrieta MP, Fortunati E, Dominici F, López J, Kenny JM (2015) Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends. Carbohydr Polym 121:265–275. https://doi.org/10.1016/j.carbpol.2014.12.056

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Motloung MP, Ojijo V, Bandyopadhyay J, Ray SS (2020) Morphological characteristics and thermal, rheological, and mechanical properties of cellulose nanocrystals-containing biodegradable poly (lactic acid)/poly (ε-caprolactone) blend composites. J Appl Polym Sci 137:48665. https://doi.org/10.1002/app.48665

    CAS  Article  Google Scholar 

  69. 69.

    Bitinis N, Fortunati E, Verdejo R, Bras J, Kenny JM, Torre L, López-Manchado MA (2013) Poly (lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites. Part II: Properties evaluation. Carbohydr Polym 96:621–627. https://doi.org/10.1016/j.carbpol.2013.03.091

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Bitinis N, Verdejo R, Bras J, Fortunati E, Kenny JM, Torre L, López-Manchado MA (2013) Poly (lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites Part I. Processing and morphology. Carbohydr Polym 96:611–620. https://doi.org/10.1016/j.carbpol.2013.02.068

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Heshmati V, Kamal MR, Favis BD (2018) Tuning the localization of finely dispersed cellulose nanocrystal in poly (lactic acid)/bio-polyamide11 blends. J Polym Sci B Polym Phys 56:576–587. https://doi.org/10.1002/polb.24563

    CAS  Article  Google Scholar 

  72. 72.

    Heshmati V, Kamal MR, Favis BD (2018) Cellulose nanocrystal in poly (lactic acid)/polyamide11 blends: preparation, morphology and co-continuity. Eur Polym J 98:11–20. https://doi.org/10.1016/j.eurpolymj.2017.10.027

    CAS  Article  Google Scholar 

  73. 73.

    Pracella M, Haque MMU, Puglia D (2014) Morphology and properties tuning of PLA/cellulose nanocrystals bio-nanocomposites by means of reactive functionalization and blending with PVAc. Polymer 55:3720–3728. https://doi.org/10.1016/j.polymer.2014.06.071

    CAS  Article  Google Scholar 

  74. 74.

    Ma P, Jiang L, Yu M, Dong W, Chen M (2016) Green antibacterial nanocomposites from poly (lactide)/poly (butylene adipate-co-terephthalate)/nanocrystal cellulose–silver nanohybrids. ACS Sustain Chem Eng 4:6417–6426. https://doi.org/10.1021/acssuschemeng.6b01106

    CAS  Article  Google Scholar 

  75. 75.

    Yasuniwa M, Tsubakihara S, Iura K, Ono Y, Dan Y, Takahashi K (2006) Crystallization behavior of poly (L-lactic acid). Polymer 47:7554–7563. https://doi.org/10.1016/j.polymer.2006.08.054

    CAS  Article  Google Scholar 

  76. 76.

    Khoshkava V, Kamal MR (2013) Effect of surface energy on dispersion and mechanical properties of polymer/nanocrystalline cellulose nanocomposites. Biomacromolecules 14:3155–3163. https://doi.org/10.1021/bm400784j

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Fenouillot F, Cassagnau P, Majesté JC (2009) Uneven distribution of nanoparticles in immiscible fluids: morphology development in polymer blends. Polymer 50:1333–1350. https://doi.org/10.1016/j.polymer.2008.12.029

    CAS  Article  Google Scholar 

  78. 78.

    Kontopoulou M, Liu Y, Austin JR, Parent JS (2007) The dynamics of montmorillonite clay dispersion and morphology development in immiscible ethylene–propylene rubber/polypropylene blends. Polymer 48:4520–4528. https://doi.org/10.1016/j.polymer.2007.05.068

    CAS  Article  Google Scholar 

  79. 79.

    Hong JS, Namkung H, Ahn KH, Lee SJ, Kim C (2006) The role of organically modified layered silicate in the breakup and coalescence of droplets in PBT/PE blends. Polymer 47:3967–3975. https://doi.org/10.1016/j.polymer.2006.03.077

    CAS  Article  Google Scholar 

  80. 80.

    Bagheriasl D, Carreau PJ, Dubois C, Riedl B (2015) Properties of polypropylene and polypropylene/poly (ethylene-co-vinyl alcohol) blend/CNC nanocomposites. Compos Sci Technol 117:357–363. https://doi.org/10.1016/j.compscitech.2015.07.012

    CAS  Article  Google Scholar 

  81. 81.

    Shi X, Qin J, Wang L, Ren L, Rong F, Li D, Wang R, Zhang G (2018) Introduction of stereocomplex crystallites of PLA for the solid and microcellular poly (lactide)/poly (butylene adipate-co-terephthalate) blends. RSC Adv 8:11850–11861. https://doi.org/10.1039/c8ra01570h

    CAS  Article  Google Scholar 

  82. 82.

    Nofar M, Mohammadi M, Carreau PJ (2020) Effect of TPU hard segment content on the rheological and mechanical properties of PLA/TPU blends. J Appl Polym Sci 137(45):49387. https://doi.org/10.1002/app.49387

    CAS  Article  Google Scholar 

  83. 83.

    Kahraman Y, Ozdemir B, Kilic V, Alkan Goksu Y, Nofar M (2021) Super toughened and highly ductile PLA/TPU blend systems by in situ reactive interfacial compatibilization using multifunctional epoxy based chain extender. J Appl Polym Sci:50457. https://doi.org/10.1002/app.50457

Download references

Acknowledgments

The authors would also like to sincerely thank Professor Seniha Fatma Guner, our TUBITAK 1001 project consultant, and Professor Metin Hayri Acar for providing us their lab space to, respectively, run rheological and DSC experiments.

Funding

The author would like to acknowledge the financial supports by the Scientific and Technological Research Council of Turkey (TUBITAK) in the context of 1001 project with the project number of 117 M238.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Nofar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sarul, D.S., Arslan, D., Vatansever, E. et al. Preparation and characterization of PLA/PBAT/CNC blend nanocomposites. Colloid Polym Sci (2021). https://doi.org/10.1007/s00396-021-04822-9

Download citation

Keywords

  • PLA
  • PBAT
  • CNC
  • Blend
  • Nanocomposite
  • Processing
  • Morphology
  • Rheology