Abstract
A theory of electroosmosis in an array of parallel cylindrical fibers of Kozak and Davis (J Colloid Interface Sci 112:403–411, 1986) is extended to cover the case where the hydrodynamic slip occurs on the fiber surface. An analytic formula for the electroosmotic velocity for low zeta potentials is obtained, and its simple approximate expression without involving numerical integration is also derived.
Graphical abstract

Electroosmotic velocity in an array of parallel cylindrical fibers with a slip surface
This is a preview of subscription content, access via your institution.




References
- 1.
von Smoluchowski M (1921) Elektrische endosmose und strömungsströme. In: Greatz E (ed) Handbuch der Elektrizität und des Magnetismus, Band II Stationäre ströme. Barth, Leipzig, pp 366–428
- 2.
Hückel E (1924) Die Kataphorese der Kugel. Phys Z 25:204–210
- 3.
Henry DC (1931) The cataphoresis of suspended particles. Part I. The equation of cataphoresis. Proc R Soc Lond Ser A 133:106–129
- 4.
Overbeek JTG (1943) Theorie der Elektrophorese. Kolloid-Beihefte 54:287–364
- 5.
Booth F (1950) The cataphoresis of spherical, solid non-conducting particles in a symmetrical electrolyte. Proc R Soc Lond Ser A 203:514–533
- 6.
Wiersema PH, Loeb AL, Overbeek JTG (1966) Calculation of the electrophoretic mobility of a spherical colloid particle. J Colloid Interface Sci 22:78–99
- 7.
Dukhin SS, Semenikhin NM (1970) Theory of double layer polarization and its influence on the electrokinetic and electrooptical phenomena and the dielectric permeability of disperse systems. Calculation of the electrophoretic and diffusiophoretic mobility of solid spherical particles. Kolloid Zh 32:360–368
- 8.
Dukhin SS, Derjaguin BV (1974) Nonequilibrium double layer and electrokinetic phenomena. In: Matievic E (ed) Surface and Colloid Science, vol 2. John Wiley & Sons, Hoboken, pp 273–336
- 9.
de Keizer A, van der Drift WPJT, Overbeek JTG (1975) Electrophoresis of randomly oriented cylindrical Particles. Biophys Chem 3:107–108
- 10.
O'Brien RW, White LR (1978) Electrophoretic mobility of a spherical colloidal particle. J Chem Soc Faraday Trans II 74:1607–1626
- 11.
Stigter D (1978) Electrophoresis of highly charged colloidal cylinders in univalent salt solutions. 1. Mobility in transverse field. J Phys Chem 82:1417–1423
- 12.
Stigter D (1978) Electrophoresis of highly charged colloidal cylinders in univalent salt solutions. 2. Random orientation in external field and application to polyelectrolytes. J Phys Chem 82:1424–1429
- 13.
van der Drift WPJT, de Keizer A, Overbeek JTG (1979) Electrophoretic mobility of a cylinder with high surface charge density. J Colloid Interface Sci 71:67–78
- 14.
Hunter RJ (1981) Zeta potential in colloid science. Academic Press, New York
- 15.
Sherwood JD (1982) Electrophoresis of rods. J Chem Soc Faraday Trans II 78:1091–1100
- 16.
Kozak MW, Davis EJ (1986) Electrokinetic phenomena in fibrous porous media. J Colloid Interface Sci 112:403–411
- 17.
Kozak MW, Davis EJ (1989) Electrokinetics of concentrated suspensions and porous media: I. Thin electrical double layers. J Colloid Interface Sci 127:497–510
- 18.
Kozak MW, Davis EJ (1989) Electrokinetics of concentrated suspensions and porous media: 2. Moderately thick electrical double layers. J Colloid Interface Sci 129:166–174
- 19.
Van de Ven TGM (1989) Colloid hydrodynamics. Academic Press, New York
- 20.
Hunter RJ (1989) Foundations of colloid science, vol 2. Oxford University Press, London/New York
- 21.
Dukhin SS (1993) Non-equilibrium electric surface phenomena. Adv Colloid Interf Sci 44:1–134
- 22.
Ohshima H (1994) A simple expression for Henry’s function for the retardation effect in electrophoresis of spherical colloidal particles. J Colloid Interface Sci 168:269–271
- 23.
Lyklema J (1995) Fundamentals of interface and colloid science, Solid-Liquid Interfaces, vol 2. Academic Press, New York
- 24.
Ohshima H (1996) Henry’s function for electrophoresis of a cylindrical colloidal particle. J Colloid Interface Sci 180:299–301
- 25.
Ohshima H (1999) Electroosmotic velocity in fibrous porous media. J Colloid Interface Sci 210:397–399
- 26.
Delgado AV (ed) (2001) Interfacial electrokinetics and electrophoresis. CRC Press, New York
- 27.
Dukhin AS, Goetz PJ (2002) Ultrasound for characterizing colloids: particle sizing, zeta potential, rheology. Elsevier, Amsterdam
- 28.
Spasic A, Hsu J-P (eds) (2005) Finely dispersed particles. Micro-. Nano-, Atto-Engineering. CRC Press, Boca Raton
- 29.
Masliyah JH, Bhattacharjee S (2006) Electrokinetic and colloid transport phenomena. John Wiley & Sons, Hoboken
- 30.
Ohshima H (2006) Theory of colloid and interfacial electric phenomena. Elsevier, Amsterdam
- 31.
Khair AS, Squires TM (2009) The influence of hydrodynamic slip on the electrophoretic mobility of a spherical colloidal particle. Phys Fluids 21:042001
- 32.
Park HM (2013) Electrophoresis of particles with Navier velocity slip. Electrophoresis 34:651–661
- 33.
Bhattacharyya S, Majee PS (2017) Electrophoresis of a polarizable charged colloid with hydrophobic surface: a numerical study. Phys Rev E 95:042605
- 34.
Gopmandal PP, Bhattacharyya S, Ohshima H (2017) On the similarity between the electrophoresis of a liquid drop and a spherical hydrophobic particle. Colloid Polym Sci 295:2077–2082
- 35.
Kumar B, Gopmandal PP, Sinha RK, Ohshima H (2019) Electrophoresis of hydrophilic/hydrophobic rigid colloid with effects of relaxation and ion size. Electrophoresis 40:1282–1292
- 36.
Ohshima H (2019) Electrokinetic phenomena in a dilute suspension of spherical solid colloidal particles with a hydrodynamically slipping surface in an aqueous electrolyte solution. Adv Colloid Interf Sci 272:101996
- 37.
Ohshima H (2020) Electrophoretic mobility of a cylindrical colloidal particle with a slip surface. Colloid Polym Sci 298:151–156
- 38.
Ohshima H (2020) Dynamic electrophoretic mobility of a spherical colloidal particle with a hydrodynamically slipping surface in an oscillating electric field. Colloid Polym Sci 298:459–462
- 39.
Ohshima H (2020) Primary electroviscous effect in a dilute suspension of charged spherical colloidal particles with a slip surface. Colloid Polym Sci 298:1551–1557
- 40.
Ohshima H (2020) Electrokinetics of spherical colloidal particles with a slip surface in a concentrated suspension. Colloid Polym Sci 298:1679–1684
- 41.
Vinogradova O (1999) Slippage of water over hydrophobic surfaces. Int J Miner Process 56:31–60
- 42.
Churaev NV, Ralston J, Sergeeva IP, Sobolev VD (2002) Electrokinetic properties of methylated quartz capillaries. Adv Colloid Interf Sci 96:265–278
- 43.
Neto C, Evans DR, Bonaccurso E, Butt HJ, Craig VSJ (2005) Boundary slip in Newtonian liquids: a review of experimental studies. Rep Prog Phys 68:2859–2897
- 44.
Bocquet L, Barrat J-L (2007) Flow boundary conditions from nano-to microscales. Soft Matter 3:685–693
- 45.
Bouzigues CI, Tabeling P, Bocquet L (2008) Nanofluidics in the Debye layer at hydrophilic and hydrophobic surfaces. Phys Rev Lett 101:114503
- 46.
Kobayashi M (2020) An analysis on electrophoretic mobility of hydrophobic polystyrene particles with low surface charge density: effect of hydrodynamic slip. Colloid Polym Sci 298:1313–1318
- 47.
Kuwabara S (1959) The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers. J Phys Soc Jpn 14:527–532
Acknowledgements
I thank Dr. Partha P. Gopmandal of the National Institute of Technology Durgapur and Prof. Somnath Bhattacharyya of the Indian Institute of Technology Kharagpur for introducing me in the field of electrokinetics of a colloidal particle with a slip surface.
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The author declares no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ohshima, H. Electroosmotic velocity in an array of parallel cylindrical fibers with a slip surface. Colloid Polym Sci (2021). https://doi.org/10.1007/s00396-021-04821-w
Received:
Accepted:
Published:
Keywords
- Electroosmotic velocity
- Zeta potential
- Cylindrical fiber
- Slip surface