Electroosmotic velocity in an array of parallel cylindrical fibers with a slip surface

Abstract

A theory of electroosmosis in an array of parallel cylindrical fibers of Kozak and Davis (J Colloid Interface Sci 112:403–411, 1986) is extended to cover the case where the hydrodynamic slip occurs on the fiber surface. An analytic formula for the electroosmotic velocity for low zeta potentials is obtained, and its simple approximate expression without involving numerical integration is also derived.

Graphical abstract

Electroosmotic velocity in an array of parallel cylindrical fibers with a slip surface

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    von Smoluchowski M (1921) Elektrische endosmose und strömungsströme. In: Greatz E (ed) Handbuch der Elektrizität und des Magnetismus, Band II Stationäre ströme. Barth, Leipzig, pp 366–428

    Google Scholar 

  2. 2.

    Hückel E (1924) Die Kataphorese der Kugel. Phys Z 25:204–210

    Google Scholar 

  3. 3.

    Henry DC (1931) The cataphoresis of suspended particles. Part I. The equation of cataphoresis. Proc R Soc Lond Ser A 133:106–129

    CAS  Article  Google Scholar 

  4. 4.

    Overbeek JTG (1943) Theorie der Elektrophorese. Kolloid-Beihefte 54:287–364

    CAS  Google Scholar 

  5. 5.

    Booth F (1950) The cataphoresis of spherical, solid non-conducting particles in a symmetrical electrolyte. Proc R Soc Lond Ser A 203:514–533

    CAS  Article  Google Scholar 

  6. 6.

    Wiersema PH, Loeb AL, Overbeek JTG (1966) Calculation of the electrophoretic mobility of a spherical colloid particle. J Colloid Interface Sci 22:78–99

    CAS  Article  Google Scholar 

  7. 7.

    Dukhin SS, Semenikhin NM (1970) Theory of double layer polarization and its influence on the electrokinetic and electrooptical phenomena and the dielectric permeability of disperse systems. Calculation of the electrophoretic and diffusiophoretic mobility of solid spherical particles. Kolloid Zh 32:360–368

    CAS  Google Scholar 

  8. 8.

    Dukhin SS, Derjaguin BV (1974) Nonequilibrium double layer and electrokinetic phenomena. In: Matievic E (ed) Surface and Colloid Science, vol 2. John Wiley & Sons, Hoboken, pp 273–336

    Google Scholar 

  9. 9.

    de Keizer A, van der Drift WPJT, Overbeek JTG (1975) Electrophoresis of randomly oriented cylindrical Particles. Biophys Chem 3:107–108

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    O'Brien RW, White LR (1978) Electrophoretic mobility of a spherical colloidal particle. J Chem Soc Faraday Trans II 74:1607–1626

    CAS  Article  Google Scholar 

  11. 11.

    Stigter D (1978) Electrophoresis of highly charged colloidal cylinders in univalent salt solutions. 1. Mobility in transverse field. J Phys Chem 82:1417–1423

    CAS  Article  Google Scholar 

  12. 12.

    Stigter D (1978) Electrophoresis of highly charged colloidal cylinders in univalent salt solutions. 2. Random orientation in external field and application to polyelectrolytes. J Phys Chem 82:1424–1429

    CAS  Article  Google Scholar 

  13. 13.

    van der Drift WPJT, de Keizer A, Overbeek JTG (1979) Electrophoretic mobility of a cylinder with high surface charge density. J Colloid Interface Sci 71:67–78

    Article  Google Scholar 

  14. 14.

    Hunter RJ (1981) Zeta potential in colloid science. Academic Press, New York

    Google Scholar 

  15. 15.

    Sherwood JD (1982) Electrophoresis of rods. J Chem Soc Faraday Trans II 78:1091–1100

    CAS  Article  Google Scholar 

  16. 16.

    Kozak MW, Davis EJ (1986) Electrokinetic phenomena in fibrous porous media. J Colloid Interface Sci 112:403–411

    CAS  Article  Google Scholar 

  17. 17.

    Kozak MW, Davis EJ (1989) Electrokinetics of concentrated suspensions and porous media: I. Thin electrical double layers. J Colloid Interface Sci 127:497–510

    CAS  Article  Google Scholar 

  18. 18.

    Kozak MW, Davis EJ (1989) Electrokinetics of concentrated suspensions and porous media: 2. Moderately thick electrical double layers. J Colloid Interface Sci 129:166–174

    CAS  Article  Google Scholar 

  19. 19.

    Van de Ven TGM (1989) Colloid hydrodynamics. Academic Press, New York

    Google Scholar 

  20. 20.

    Hunter RJ (1989) Foundations of colloid science, vol 2. Oxford University Press, London/New York

    Google Scholar 

  21. 21.

    Dukhin SS (1993) Non-equilibrium electric surface phenomena. Adv Colloid Interf Sci 44:1–134

    CAS  Article  Google Scholar 

  22. 22.

    Ohshima H (1994) A simple expression for Henry’s function for the retardation effect in electrophoresis of spherical colloidal particles. J Colloid Interface Sci 168:269–271

    CAS  Article  Google Scholar 

  23. 23.

    Lyklema J (1995) Fundamentals of interface and colloid science, Solid-Liquid Interfaces, vol 2. Academic Press, New York

    Google Scholar 

  24. 24.

    Ohshima H (1996) Henry’s function for electrophoresis of a cylindrical colloidal particle. J Colloid Interface Sci 180:299–301

    CAS  Article  Google Scholar 

  25. 25.

    Ohshima H (1999) Electroosmotic velocity in fibrous porous media. J Colloid Interface Sci 210:397–399

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Delgado AV (ed) (2001) Interfacial electrokinetics and electrophoresis. CRC Press, New York

    Google Scholar 

  27. 27.

    Dukhin AS, Goetz PJ (2002) Ultrasound for characterizing colloids: particle sizing, zeta potential, rheology. Elsevier, Amsterdam

    Google Scholar 

  28. 28.

    Spasic A, Hsu J-P (eds) (2005) Finely dispersed particles. Micro-. Nano-, Atto-Engineering. CRC Press, Boca Raton

    Google Scholar 

  29. 29.

    Masliyah JH, Bhattacharjee S (2006) Electrokinetic and colloid transport phenomena. John Wiley & Sons, Hoboken

    Google Scholar 

  30. 30.

    Ohshima H (2006) Theory of colloid and interfacial electric phenomena. Elsevier, Amsterdam

    Google Scholar 

  31. 31.

    Khair AS, Squires TM (2009) The influence of hydrodynamic slip on the electrophoretic mobility of a spherical colloidal particle. Phys Fluids 21:042001

    Article  CAS  Google Scholar 

  32. 32.

    Park HM (2013) Electrophoresis of particles with Navier velocity slip. Electrophoresis 34:651–661

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Bhattacharyya S, Majee PS (2017) Electrophoresis of a polarizable charged colloid with hydrophobic surface: a numerical study. Phys Rev E 95:042605

    PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Gopmandal PP, Bhattacharyya S, Ohshima H (2017) On the similarity between the electrophoresis of a liquid drop and a spherical hydrophobic particle. Colloid Polym Sci 295:2077–2082

    CAS  Article  Google Scholar 

  35. 35.

    Kumar B, Gopmandal PP, Sinha RK, Ohshima H (2019) Electrophoresis of hydrophilic/hydrophobic rigid colloid with effects of relaxation and ion size. Electrophoresis 40:1282–1292

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Ohshima H (2019) Electrokinetic phenomena in a dilute suspension of spherical solid colloidal particles with a hydrodynamically slipping surface in an aqueous electrolyte solution. Adv Colloid Interf Sci 272:101996

    CAS  Article  Google Scholar 

  37. 37.

    Ohshima H (2020) Electrophoretic mobility of a cylindrical colloidal particle with a slip surface. Colloid Polym Sci 298:151–156

    CAS  Article  Google Scholar 

  38. 38.

    Ohshima H (2020) Dynamic electrophoretic mobility of a spherical colloidal particle with a hydrodynamically slipping surface in an oscillating electric field. Colloid Polym Sci 298:459–462

    CAS  Article  Google Scholar 

  39. 39.

    Ohshima H (2020) Primary electroviscous effect in a dilute suspension of charged spherical colloidal particles with a slip surface. Colloid Polym Sci 298:1551–1557

    CAS  Article  Google Scholar 

  40. 40.

    Ohshima H (2020) Electrokinetics of spherical colloidal particles with a slip surface in a concentrated suspension. Colloid Polym Sci 298:1679–1684

    CAS  Article  Google Scholar 

  41. 41.

    Vinogradova O (1999) Slippage of water over hydrophobic surfaces. Int J Miner Process 56:31–60

    CAS  Article  Google Scholar 

  42. 42.

    Churaev NV, Ralston J, Sergeeva IP, Sobolev VD (2002) Electrokinetic properties of methylated quartz capillaries. Adv Colloid Interf Sci 96:265–278

    CAS  Article  Google Scholar 

  43. 43.

    Neto C, Evans DR, Bonaccurso E, Butt HJ, Craig VSJ (2005) Boundary slip in Newtonian liquids: a review of experimental studies. Rep Prog Phys 68:2859–2897

    CAS  Article  Google Scholar 

  44. 44.

    Bocquet L, Barrat J-L (2007) Flow boundary conditions from nano-to microscales. Soft Matter 3:685–693

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Bouzigues CI, Tabeling P, Bocquet L (2008) Nanofluidics in the Debye layer at hydrophilic and hydrophobic surfaces. Phys Rev Lett 101:114503

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Kobayashi M (2020) An analysis on electrophoretic mobility of hydrophobic polystyrene particles with low surface charge density: effect of hydrodynamic slip. Colloid Polym Sci 298:1313–1318

    CAS  Article  Google Scholar 

  47. 47.

    Kuwabara S (1959) The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers. J Phys Soc Jpn 14:527–532

    Article  Google Scholar 

Download references

Acknowledgements

I thank Dr. Partha P. Gopmandal of the National Institute of Technology Durgapur and Prof. Somnath Bhattacharyya of the Indian Institute of Technology Kharagpur for introducing me in the field of electrokinetics of a colloidal particle with a slip surface.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Ohshima.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ohshima, H. Electroosmotic velocity in an array of parallel cylindrical fibers with a slip surface. Colloid Polym Sci (2021). https://doi.org/10.1007/s00396-021-04821-w

Download citation

Keywords

  • Electroosmotic velocity
  • Zeta potential
  • Cylindrical fiber
  • Slip surface