Facile production of cellulosic organic solutions and organogels from ionic liquid media

Abstract

In this study, we investigate what types of cellulosic materials are formed by soaking the cellulose/ionic liquid (1-butyl-3-methylimidazolium chloride, BMIMCl) solutions in various organic liquids. When the 5-wt% cellulose/BMIMCl solutions were soaked in organic liquids with high and moderate polarities (relative permittivities), the corresponding cellulosic solutions and gels were produced, respectively. On the other hand, soaking the cellulose/BMIMCl solutions in lower polar liquids resulted in aggregation of cellulose in the mixtures. As the gels with high boiling point media were stable, they were characterized by viscoelastic and compression measurements. Contents of organic media and BMIMCl in the gels were changed depending on the polarities, which affected the mechanical properties under compression mode. Furthermore, processes for production of the solution, gel, and aggregate were proposed.

Facile production of cellulosic organic solutions and organogels from ionic liquid media

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Schuerch C (1986) Polysaccharides. In: Mark HF, Bilkales N, Overberger CG (eds) Encyclopedia of polymer science and engineering. 2nd edn, vol 13. John Wiley & Sons, New York, pp 87–162

    Google Scholar 

  2. 2.

    Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    CAS  Article  Google Scholar 

  3. 3.

    Xiao C, Zhang Z, Zhang J, Lu Y, Zhang L (2003) Properties of regenerated cellulose films plasticized with α-monoglycerides. J Appl Polym Sci 89:3500–3505. https://doi.org/10.1002/app.12509

    CAS  Article  Google Scholar 

  4. 4.

    Chen SS, Wang L, Yu IKM, Tsang DCW, Hunt AJ, Jérôme F, Zhang S, Ok YS, Poon CS (2018) Valorization of lignocellulosic fibres of paper waste into levulinic acid using solid and aqueous Brønsted acid. Bioresour Technol 247:387–394. https://doi.org/10.1016/j.biortech.2017.09.110

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Le Phuong HA, Izzati Ayob NA, Blanford CF, Mohammad Rawi NF, Szekely G (2019) Nonwoven membrane supports from renewable resources: bamboo fiber reinforced poly(lactic acid) composites. ACS Sustain Chem Eng 7:11885–11893. https://doi.org/10.1021/acssuschemeng.9b02516

    CAS  Article  Google Scholar 

  6. 6.

    Pei L, Luo Y, Gu X, Dou H, Wang J (2019) Diffusion mechanism of aqueous solutions and swelling of cellulosic fibers in silicone non-aqueous dyeing system. Polymers 11:411

    Article  Google Scholar 

  7. 7.

    Curvello R, Raghuwanshi VS, Garnier G (2019) Engineering nanocellulose hydrogels for biomedical applications. Adv Colloid Interf Sci 267:47–61. https://doi.org/10.1016/j.cis.2019.03.002

    CAS  Article  Google Scholar 

  8. 8.

    Haq MA, Habu Y, Yamamoto K, Takada A, Kadokawa J (2019) Ionic liquid induces flexibility and thermoplasticity in cellulose film. Carbohydr Polym 223:115058. https://doi.org/10.1016/j.carbpol.2019.115058

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Kadokawa J, Murakami M, Kaneko Y (2008) A facile preparation of gel materials from a solution of cellulose in ionic liquid. Carbohydr Res 343:769–772

    CAS  Article  Google Scholar 

  10. 10.

    Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975

    CAS  Article  Google Scholar 

  11. 11.

    El-Hadi A, Schnabel R, Straube E, Müller G, Henning S (2002) Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) PHAs and their blends. Polym Test 21:665–674. https://doi.org/10.1016/S0142-9418(01)00142-8

    CAS  Article  Google Scholar 

  12. 12.

    Liebert T, Heinze T (2008) Interaction of ionic liquids with polysaccharides. 5. Solvents and reaction media for the modification of cellulose. Bioresources 3:576–601

    Google Scholar 

  13. 13.

    Feng L, Chen ZI (2008) Research progress on dissolution and functional modification of cellulose in ionic liquids. J Mol Liq 142:1–5. https://doi.org/10.1016/j.molliq.2008.06.007

    CAS  Article  Google Scholar 

  14. 14.

    Pinkert A, Marsh KN, Pang SS, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728. https://doi.org/10.1021/cr9001947

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Gericke M, Fardim P, Heinze T (2012) Ionic liquids - promising but challenging solvents for homogeneous derivatization of cellulose. Molecules 17:7458–7502. https://doi.org/10.3390/molecules17067458

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Isik M, Sardon H, Mecerreyes D (2014) Ionic liquids and cellulose: dissolution, chemical modification and preparation of new cellulosic materials. Int J Mol Sci 15:11922–11940. https://doi.org/10.3390/ijms150711922

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Zhang J, Wu J, Yu J, Zhang X, He J, Zhang J (2017) Application of ionic liquids for dissolving cellulose and fabricating cellulose-based materials: state of the art and future trends. Mater Chem Front 1:1273–1290. https://doi.org/10.1039/c6qm00348f

    CAS  Article  Google Scholar 

  18. 18.

    Hermanutz F, Vocht MP, Panzier N, Buchmeiser MR (2019) Processing of cellulose using ionic liquids. Macromol Mater Eng 304:1800450. https://doi.org/10.1002/mame.201800450

    CAS  Article  Google Scholar 

  19. 19.

    Verma C, Mishra A, Chauhan S, Verma P, Srivastava V, Quraishi MA, Ebenso EE (2019) Dissolution of cellulose in ionic liquids and their mixed cosolvents: A review. Sustain Chem Pharm 13:13. https://doi.org/10.1016/j.scp.2019.100162

    Article  Google Scholar 

  20. 20.

    Hu X, Hu K, Zeng L, Zhao M, Huang H (2010) Hydrogels prepared from pineapple peel cellulose using ionic liquid and their characterization and primary sodium salicylate release study. Carbohydr Polym 82:62–68. https://doi.org/10.1016/j.carbpol.2010.04.023

    CAS  Article  Google Scholar 

  21. 21.

    Hu X, Wang J, Huang H (2013) Impacts of some macromolecules on the characteristics of hydrogels prepared from pineapple peel cellulose using ionic liquid. Cellulose 20:2923–2933. https://doi.org/10.1007/s10570-013-0075-4

    CAS  Article  Google Scholar 

  22. 22.

    Lü X, Li L, Lin Z, Cui S (2011) Formation mechanism of ionic liquid-reconstituted cellulose hydrogels and their application in gel electrophoresis. Acta Polym Sin:1026–1032. https://doi.org/10.3724/SP.J.1105.2011.10353

  23. 23.

    Liang X, Qu B, Li J, Xiao H, He B, Qian L (2015) Preparation of cellulose-based conductive hydrogels with ionic liquid. React Funct Polym 86:1–6. https://doi.org/10.1016/j.reactfunctpolym.2014.11.002

    CAS  Article  Google Scholar 

  24. 24.

    Shen X, Shamshina JL, Berton P, Bandomir J, Wang H, Gurau G, Rogers RD (2016) Comparison of hydrogels prepared with ionic-liquid-isolated vs commercial chitin and cellulose. ACS Sustain Chem Eng 4:471–480. https://doi.org/10.1021/acssuschemeng.5b01400

    CAS  Article  Google Scholar 

  25. 25.

    Peng H, Wang S, Xu H, Dai G (2018) Preparations, properties, and formation mechanism of novel cellulose hydrogel membrane based on ionic liquid. J Appl Polym Sci 135:45488. https://doi.org/10.1002/app.45488

    CAS  Article  Google Scholar 

  26. 26.

    Idenoue S, Oga Y, Hashimoto D, Yamamoto K, Kadokawa J (2019) Preparation of reswellable amorphous porous celluloses through hydrogelation from ionic liquid solutions. Materials 12. https://doi.org/10.3390/ma12193249

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jun-ichi Kadokawa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kadokawa, J., Ohyama, N., Idenoue, S. et al. Facile production of cellulosic organic solutions and organogels from ionic liquid media. Colloid Polym Sci 298, 1129–1134 (2020). https://doi.org/10.1007/s00396-020-04685-6

Download citation

Keywords

  • Cellulose
  • Ionic liquid
  • Organogels
  • Organic solution