Redox-responsive AIE micelles for intracellular paclitaxel delivery

Abstract

Compared with conventional drug nanocarriers, multifunctional drug delivery systems exhibited characteristic advantages. In this study, we developed a multifunctional drug delivery system possessing stimuli-responsive drug release and cellular imaging. Amphiphilic polymers, methoxypolyethylene glycol-cystamine-tetraphenylethene (mPEG1k-SS-TPE), were synthesized by combining methoxypolyethylene glycol (mPEG1k) and tetraphenylethene (TPE) using reduction-sensitive disulfide bonds that can be disconnected by high level of inherent glutathione (GSH). Size distribution and morphology of mPEG1k-SS-TPE micelles were evaluated. Meanwhile, the reduction-sensitivity of mPEG1k-SS-TPE micelles was surveyed compared with that of mPEG1k-TPE micelles. Nile Red was encapsulated into mPEG1k-SS-TPE micelles to visually observe intracellular drug delivery against SW480 cells. Paclitaxel (PTX) was chosen to be loaded into micelles to evaluate the cytotoxicity against HCT116, HT-29, and SW480.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Li J, Wang J, Zhang X, Xia X, Zhang C (2019) Biodegradable reduction-responsive polymeric micelles for enhanced delivery of melphalan to retinoblastoma cells. Int J Biol Macromol 141:997–1003. https://doi.org/10.1016/j.ijbiomac.2019.09.085

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Trubitsyn G, Nguyen VN, Di Tommaso C et al (2019) Impact of covalently Nile Red and covalently Rhodamine labeled fluorescent polymer micelles for the improved imaging of the respective drug delivery system. Eur J Pharm Biopharm 142:480–487. https://doi.org/10.1016/j.ejpb.2019.07.020

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Wang C, Zhu J, Ma J, Yang Y, Cui X (2019) Functionalized Bletilla striata polysaccharide micelles for targeted intracellular delivery of Doxorubicin: In vitro and in vivo evaluation. Int J Pharm 567:118436. https://doi.org/10.1016/j.ijpharm.2019.06.027

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Jiang M, Zhang E, Liang Z, Zhao Y, Zhang S, Xu H, Wang H, Shu X, Kang X, Sun L, Zhen Y (2019) Liposome-based co-delivery of 7-O-geranyl-quercetin and IGF-1R siRNA for the synergistic treatment of non-small cell lung cancer. J Drug Deliv Sci Technol 54:101316. https://doi.org/10.1016/j.jddst.2019.101316

    CAS  Article  Google Scholar 

  5. 5.

    Katayama T, Kinugawa S, Takada S, Furihata T, Fukushima A, Yokota T, Anzai T, Hibino M, Harashima H, Yamada Y (2019) A mitochondrial delivery system using liposome-based nanocarriers that target myoblast cells. Mitochondrion 49:66–72. https://doi.org/10.1016/j.mito.2019.07.005

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Xiao Y, Liu Q, Clulow AJ, Li T, Manohar M, Gilbert EP, de Campo L, Hawley A, Boyd BJ (2019) PEGylation and surface functionalization of liposomes containing drug nanocrystals for cell-targeted delivery. Colloids Surfaces B Biointerfaces 182:110362. https://doi.org/10.1016/j.colsurfb.2019.110362

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Mukherjee S, Kotcherlakota R, Haque S, Bhattacharya D, Kumar JM, Chakravarty S, Patra CR (2020) Improved delivery of doxorubicin using rationally designed PEGylated platinum nanoparticles for the treatment of melanoma. Mater Sci Eng C 108:110375. https://doi.org/10.1016/j.msec.2019.110375

    CAS  Article  Google Scholar 

  8. 8.

    Wang S, Chen Y, Wang S, Li P, Mirkin CA, Farha OK (2019) DNA-functionalized metal-organic framework nanoparticles for intracellular delivery of proteins. J Am Chem Soc 141:2215–2219. https://doi.org/10.1021/jacs.8b12705

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Qiu L, Zhao L, Xing C, Zhan Y (2018) Redox-responsive polymer prodrug/AgNPs hybrid nanoparticles for drug delivery. Chinese Chem Lett 29:301–304. https://doi.org/10.1016/j.cclet.2017.09.048

    CAS  Article  Google Scholar 

  10. 10.

    Hung WH, Zheng JH, Lee KC, Cho EC (2019) Doxorubicin conjugated AuNP/biopolymer composites facilitate cell cycle regulation and exhibit superior tumor suppression potential in KRAS mutant colorectal cancer. J Biotechnol 306:149–158. https://doi.org/10.1016/j.jbiotec.2019.09.015

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Park J, Choi Y, Chang H, Um W, Ryu JH, Kwon IC (2019) Alliance with EPR effect: combined strategies to improve the EPR effect in the tumor microenvironment. Theranostics 9:8073–8090. https://doi.org/10.7150/thno.37198

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Yoshikawa T, Mori Y, Feng H, Phan KQ, Kishimura A, Kang JH, Mori T, Katayama Y (2019) Rapid and continuous accumulation of nitric oxide-releasing liposomes in tumors to augment the enhanced permeability and retention (EPR) effect. Int J Pharm 565:481–487. https://doi.org/10.1016/j.ijpharm.2019.05.043

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Kalyane D, Raval N, Maheshwari R, Tambe V, Kalia K, Tekade RK (2019) Employment of enhanced permeability and retention effect (EPR): nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater Sci Eng C 98:1252–1276. https://doi.org/10.1016/j.msec.2019.01.066

    CAS  Article  Google Scholar 

  14. 14.

    Yang M, Ding H, Zhu Y, Ge Y, Li L (2019) Co-delivery of paclitaxel and doxorubicin using mixed micelles based on the redox sensitive prodrugs. Colloids Surfaces B Biointerfaces 175:126–135. https://doi.org/10.1016/j.colsurfb.2018.11.086

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Du J, Choi B, Liu Y et al (2019) Degradable pH and redox dual responsive nanoparticles for efficient covalent drug delivery. Polym Chem 10:1291–1298. https://doi.org/10.1039/c8py01583j

    CAS  Article  Google Scholar 

  16. 16.

    Dhawan S, Ghosh S, Ravinder R, Bais SS, Basak S, Krishnan NMA, Agarwal M, Banerjee M, Haridas V (2019) Redox sensitive self-assembling dipeptide for sustained intracellular drug delivery. Bioconjug Chem 30:2458–2468. https://doi.org/10.1021/acs.bioconjchem.9b00532

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Xiang Y, Duan X, Feng L, Jiang S, Deng L, Shen J, Yang Y, Guo R (2019) tLyp-1-conjugated GSH-sensitive biodegradable micelles mediate enhanced pUNO1-hTRAILa/curcumin co-delivery to gliomas. Chem Eng J 374:392–404. https://doi.org/10.1016/j.cej.2019.05.186

    Article  Google Scholar 

  18. 18.

    Sun J, Liu Y, Chen Y, Zhao W, Zhai Q, Rathod S, Huang Y, Tang S, Kwon YT, Fernandez C, Venkataramanan R, Li S (2017) Doxorubicin delivered by a redox-responsive dasatinib-containing polymeric prodrug carrier for combination therapy. J Control Release 258:43–55. https://doi.org/10.1016/j.jconrel.2017.05.006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Qu Y, Chu B, Wei X, Lei M, Hu D, Zha R, Zhong L, Wang M, Wang F, Qian Z (2019) Redox/pH dual-stimuli responsive camptothecin prodrug nanogels for “on-demand” drug delivery. J Control Release 296:93–106. https://doi.org/10.1016/j.jconrel.2019.01.016

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Youmei L, Qian W, Miaomiao K et al (2020) Boosting the photodynamic therapy efficiency by using stimuli-responsive and AIE-featured nanoparticles. Biomaterials 232:119749. https://doi.org/10.1016/j.biomaterials.2019.119749

    CAS  Article  Google Scholar 

  21. 21.

    Wang D, Lee MMS, Xu W, Kwok RTK, Lam JWY, Tang BZ (2018) Theranostics based on AIEgens. Theranostics 8:4925–4956. https://doi.org/10.7150/thno.27787

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Dai YD, Sun XY, Sun W, Yang JB, Liu R, Luo Y, Zhang T, Tian Y, Lu ZL, He L (2019) H2O2-responsive polymeric micelles with a benzil moiety for efficient DOX delivery and AIE imaging. Org Biomol Chem 17:5570–5577. https://doi.org/10.1039/c9ob00859d

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Yu T, Zhuang W, Su X, Ma B, Hu J, He H, Li G, Wang Y (2019) Dual-responsive micelles with aggregation-induced emission feature and two-photon aborsption for accurate drug delivery and bioimaging. Bioconjug Chem 30:2075–2087. https://doi.org/10.1021/acs.bioconjchem.9b00364

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Dong Z, Bi Y, Cui H, Wang Y, Wang C, Li Y, Jin H, Wang C (2019) AIE supramolecular assembly with FRET effect for visualizing drug delivery. ACS Appl Mater Interfaces 11:23840–23847. https://doi.org/10.1021/acsami.9b04938

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Zhang C, Jin S, Yang K, Xue X, Li Z, Jiang Y, Chen WQ, Dai L, Zou G, Liang XJ (2014) Cell membrane tracker based on restriction of intramolecular rotation. ACS Appl Mater Interfaces 6:8971–8975. https://doi.org/10.1021/am5025897

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    He X, Yin F, Wang D, Xiong LH, Kwok RTK, Gao PF, Zhao Z, Lam JWY, Yong KT, Li Z, Tang BZ (2019) AIE featured inorganic-organic core@shell nanoparticles for high-efficiency siRNA delivery and real-time monitoring. Nano Lett 19:2272–2279. https://doi.org/10.1021/acs.nanolett.8b04677

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Chen Y, Han H, Tong H, Chen T, Wang H, Ji J, Jin Q (2016) Zwitterionic phosphorylcholine-TPE conjugate for pH-responsive drug delivery and AIE active imaging. ACS Appl Mater Interfaces 8:21185–21192. https://doi.org/10.1021/acsami.6b06071

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Gao Y, Wei K, Li J, Li Y, Hu J (2018) A facile four-armed AIE fluorescent sensor for heparin and protamine. Sensors Actuators, B Chem 277:408–414. https://doi.org/10.1016/j.snb.2018.09.054

    CAS  Article  Google Scholar 

  29. 29.

    Feng X, Zhou Y, Xie X, Li M, Huang H, Wang L, Xu X, Yu J (2019) Development of PSMA-targeted and core-crosslinked glycol chitosan micelles for docetaxel delivery in prostate cancer therapy. Mater Sci Eng C 96:436–445. https://doi.org/10.1016/j.msec.2018.11.044

    CAS  Article  Google Scholar 

  30. 30.

    Li Y, Xiao W, Xiao K, Berti L, Luo J, Tseng HP, Fung G, Lam KS (2012) Well-defined, reversible boronate crosslinked nanocarriers for targeted drug delivery in response to acidic pH values and cis-diols. Angew Chemie - Int Ed 51:2864–2869. https://doi.org/10.1002/anie.201107144

    CAS  Article  Google Scholar 

  31. 31.

    Sun H, Meng F, Cheng R, Deng C, Zhong Z (2013) Reduction-sensitive degradable micellar nanoparticles as smart and intuitive delivery systems for cancer chemotherapy. Expert Opin Drug Deliv 10:1109–1122. https://doi.org/10.1517/17425247.2013.783009

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qiang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 535 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Gao, F. & Zhou, X. Redox-responsive AIE micelles for intracellular paclitaxel delivery. Colloid Polym Sci (2020). https://doi.org/10.1007/s00396-020-04679-4

Download citation

Keywords

  • Reduction-sensitive
  • Cellular imaging
  • Aggregation-induced emission
  • Paclitaxel