Rheology and foaming behaviour of styrene–ethylene–butylene–styrene nanocomposites


The dependence of the foaming behaviour of a polymeric material on its material characteristics and foaming temperature gives rise to the research question that how the degree of dispersion/distribution of nanoparticles and the resulting viscosity changes affect the foaming behaviour and properties of nanocomposite foams. In the study reported here, styrene–ethylene–butylene–styrene was selected as a model polymer, because of its complex microstructure and its commercial importance. Styrene–ethylene–butylene–styrene nanocomposites, with different nanoclay loadings, were processed in a twin-screw extruder. The nanocomposite structure was correlated with the rheological properties to evaluate the batch-foaming performance of nanocomposite using carbon dioxide at different temperatures. At 35 °C, selective foaming of the elastomeric phase, hindered by the stiff polystyrene phase, resulted in foams with more than 74% shrinkage. At 80 °C, higher viscosities and moduli resulted in foams with higher volume expansion ratios. Increases in the degree of delamination of silicate layers in nanocomposites resulted in cell sizes up to 41% and 75% lower than that of neat polymer foams produced at 35 °C and 80 °C, respectively. Dynamic mechanical analysis results suggest heterogeneous nucleation and the presence of nanoclay in both phases. The study results show that the nanocomposite structure plays an important role in the production of thermoplastic elastomer foams of superior morphology and low shrinkage.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10





dynamic mechanical analysis


storage modulus (in DMA studies)


loss modulus (in DMA studies)

η app :

apparent viscosity


complex viscosity

\({\dot{\gamma}}_{\mathrm{app}}\) :

apparent shear rate


storage modulus (in melt rheology)


loss modulus (in melt rheology)


melt flow index

N 0 :

cell density

ρ :





scanning electron microscopy

τ :

shear stress


transmission electron microscopy

T g :

glass transition temperature


thermoplastic elastomer


volume expansion ratio

w :



X-ray diffraction


  1. 1.

    Raha S, Kao N, Bhattacharya SN (2005) Effect of polypropylene on the rheology of co-continuous PS/ SEBS blends. Polym Eng Sci 45:1432–1444

    CAS  Article  Google Scholar 

  2. 2.

    Zhang Y, Kontopoulou M, Park CB, Ye X (2009) In-situ investigation of the foamability of polyolefin elastomer and PP within a rheometer. 8th World Congr Chem Eng

  3. 3.

    Zhai W, Kuboki T, Wang L, Park CB (2010) Cell structure evolution and the crystallisation behaviour of polypropylene/clay nanocomposites foams blown in continuous extrusion. Ind Eng Chem Res 49:9834–9845

    CAS  Article  Google Scholar 

  4. 4.

    Bhattacharya S, Gupta R, Jollands M, Bhattacharya SN (2009) Foaming behaviour of high melt-strength polypropylene/clay nanocomposites. Polym Eng Sci 49:2070–2084

    CAS  Article  Google Scholar 

  5. 5.

    Gendron R, Vachon C (2003) Effect of viscosity on low density foaming of poly (ethylene-co-octene) resins. J Cell Plast 39:71–85

    CAS  Article  Google Scholar 

  6. 6.

    Zhang Y, Parent JS, Kontopoulou M, Park CB (2015) Foaming of reactively modified polypropylene: effects of rheology and coagent type. J Cell Plast 51:505–522. https://doi.org/10.1177/0021955X14566209

    CAS  Article  Google Scholar 

  7. 7.

    Gunkel F, Sporrer A, Lim G et al (2008) Understanding melt rheology and foamability of polypropylene-based TPO blends. J Cell Plast 44:307–325

    CAS  Article  Google Scholar 

  8. 8.

    Sharudin R, Ohshima M (2013) Preparation of microcellular thermoplastic elastomer foams from polystyrene-b-ethylene-butylene-b-polystyrene (SEBS) and their blends with polystyrene. J Appl Polym Sci 128:2245–2254

    CAS  Article  Google Scholar 

  9. 9.

    Zhang Y, Kontopoulou M, Ansari M, Hatzikiriakos S, Park CB (2011) Effect of molecular structure and rheology on the compression foam molding of ethylene-α-olefin copolymers. Polym Eng Sci 51:1145–1154. https://doi.org/10.1002/pen.21851

    CAS  Article  Google Scholar 

  10. 10.

    Wong A, Park CB (2014) Fundamental mechanisms of cell nucleation in plastic foam processing. In: Lee ST, Park CB (eds) Foam extrusion: principles and practice2nd edn. CRC Press, Boca Raton

    Google Scholar 

  11. 11.

    Colton JS, Suh NP (1987) The nucleation of microcellular thermoplastic foam with additives: part II: experimental results and discussion. Polym Eng Sci 27:493–499. https://doi.org/10.1002/pen.760270703

    CAS  Article  Google Scholar 

  12. 12.

    Ward CA, Levart E (1984) Conditions for stability of bubble nuclei in solid surfaces contacting a liquid-gas solution. J Appl Phys 56:491–500. https://doi.org/10.1063/1.333937

    CAS  Article  Google Scholar 

  13. 13.

    Ward CA, Johnson WR, Venter RD, Ho S, Forest TW, Fraser WD (1983) Heterogeneous bubble nucleation and conditions for growth in a liquid-gas system of constant mass and volume. J Appl Phys 54:1833–1843. https://doi.org/10.1063/1.332819

    Article  Google Scholar 

  14. 14.

    Harvey EN, McElroy WD, Whiteley AH (1947) On cavity formation in water. J Appl Phys 18:162–172. https://doi.org/10.1063/1.1697598

    CAS  Article  Google Scholar 

  15. 15.

    Lee S-T (1993) Shear effects on thermoplastic foam nucleation. Polym Eng Sci 33:418–422. https://doi.org/10.1002/pen.760330707

    CAS  Article  Google Scholar 

  16. 16.

    Ito Y, Yamashita M, Okamoto M (2006) Foam processing and cellular structure of polycarbonate-based nanocomposites. Macromol Mater Eng 291:773–783

    CAS  Article  Google Scholar 

  17. 17.

    Eteläaho P, Nevalainen K, Suihkonen R, Vuorinen J, Hanhi K, Järvelä P (2009) Effects of direct melt compounding and masterbatch dilution on the structure and properties of nanoclay-filled polyolefins. Polym Eng Sci 49:1438–1446

    Article  Google Scholar 

  18. 18.

    Zhu L, Xanthos M (2004) Effects of process conditions and mixing protocols on structure of extruded polypropylene nanocomposites. J Appl Polym Sci 93:1891–1899

    CAS  Article  Google Scholar 

  19. 19.

    Bureau MN, Perrin-Sarazin F, Ton-That MT (2004) Polyolefin nanocomposites: essential work of fracture analysis. Polym Eng Sci 44:1142–1151

    CAS  Article  Google Scholar 

  20. 20.

    Menard KP (2007) Dynamic mechanical analysis: a practical application. CRC Press, Boca Raton

    Google Scholar 

  21. 21.

    Yang S, Taha-Tijerina J, Serrato-Diaz V, Hernandez K, Lozano K (2007) Dynamic mechanical and thermal analysis of aligned vapor grown carbon nanofiber reinforced polyethylene. Compos Part B Eng 38:228–235

    Article  Google Scholar 

  22. 22.

    Bindu P, Thomas S (2013) Viscoelastic behavior and reinforcement mechanism in rubber nanocomposites in the vicinity of spherical nanoparticles. J Phys Chem B 117:12632–12648. https://doi.org/10.1021/jp4039489

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Yousfi M, Alix S, Lebeau M, Soulestin J, Lacrampe MF, Krawczak P (2014) Evaluation of rheological properties of non-Newtonian fluids in micro rheology compounder: experimental procedures for a reliable polymer melt viscosity measurement. Polym Test 40:207–217. https://doi.org/10.1016/j.polymertesting.2014.09.010

    CAS  Article  Google Scholar 

  24. 24.

    Gamon G, Evon P, Rigal L (2013) Twin-screw extrusion impact on natural fibre morphology and material properties in poly(lactic acid) based biocomposites. Ind Crop Prod 46:173–185. https://doi.org/10.1016/j.indcrop.2013.01.026

    CAS  Article  Google Scholar 

  25. 25.

    Leroy E, Jacquet P, Coativy G, Reguerre A, Lourdin D (2012) Compatibilization of starch–zein melt processed blends by an ionic liquid used as plasticizer. Carbohydr Polym 89:955–963. https://doi.org/10.1016/j.carbpol.2012.04.044

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Bialleck S, Rein H (2011) Preparation of starch-based pellets by hot-melt extrusion. Eur J Pharm Biopharm 79:440–448. https://doi.org/10.1016/j.ejpb.2011.04.007

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Banerjee R, Sinha Ray S, Ghosh AK (2017) Dynamic rheology and foaming behaviour of styrene–ethylene–butylene–styrene/polystyrene blends. J Cell Plast 53:389–406. https://doi.org/10.1177/0021955X16652108

    CAS  Article  Google Scholar 

  28. 28.

    Kim SG, Leung SN, Park CB, Sain M (2011) The effect of dispersed elastomer particle size on heterogeneous nucleation of TPO with N2 foaming. Chem Eng Sci 66:3675–3686

    CAS  Article  Google Scholar 

  29. 29.

    Ray SS, Okamoto M (2003) New polylactide/layered silicate nanocomposites, 6a. Melt rheology and foam processing. Macromol Mater Eng 288:936–944

    CAS  Article  Google Scholar 

  30. 30.

    Lele A, Mackley M, Galgali G, Ramesh C (2002) In situ rheo--ray investigation of flow-induced orientation in layered silicate–syndiotactic polypropylene nanocomposite melt. J Rheol 46:1091–1110

    CAS  Article  Google Scholar 

  31. 31.

    Ivanoska-Dacikj A, Bogoeva-Gaceva G, Rooj S, Wießner S, Heinrich G (2015) Fine tuning of the dynamic mechanical properties of natural rubber/carbon nanotube nanocomposites by organically modified montmorillonite: a first step in obtaining high-performance damping material suitable for seismic application. Appl Clay Sci 118:99–106. https://doi.org/10.1016/j.clay.2015.09.009

    CAS  Article  Google Scholar 

  32. 32.

    Rooj S, Das A, Stöckelhuber KW, Wießner S, Fischer D, Reuter U, Heinrich G (2015) “Expanded organoclay” assisted dispersion and simultaneous structural alterations of multiwall carbon nanotube (MWCNT) clusters in natural rubber. Compos Sci Technol 107:36–43. https://doi.org/10.1016/j.compscitech.2014.11.018

    CAS  Article  Google Scholar 

  33. 33.

    Das A, Stöckelhuber KW, Jurk R, Fritzsche J, Klüppel M, Heinrich G (2009) Coupling activity of ionic liquids between diene elastomers and multi-walled carbon nanotubes. Carbon N Y 47:3313–3321. https://doi.org/10.1016/j.carbon.2009.07.052

    CAS  Article  Google Scholar 

  34. 34.

    Rooj S, Das A, Stöckelhuber KW, Reuter U, Heinrich G (2012) Highly exfoliated natural rubber/clay composites by “propping-open procedure”: the influence of fatty-acid chain length on exfoliation. Macromol Mater Eng 297:369–383. https://doi.org/10.1002/mame.201100185

    CAS  Article  Google Scholar 

  35. 35.

    Rooj S, Das A, Stöckelhuber KW, Wang DY, Galiatsatos V, Heinrich G (2013) Understanding the reinforcing behavior of expanded clay particles in natural rubber compounds. Soft Matter 9:3798–3808. https://doi.org/10.1039/c3sm27519a

    CAS  Article  Google Scholar 

  36. 36.

    Morgan AB, Harris JD (2003) Effects of organoclay Soxhlet extraction on mechanical properties, flammability properties and organoclay dispersion of polypropylene nanocomposites. Polymer (Guildf) 44:2313–2320. https://doi.org/10.1016/S0032-3861(03)00095-8

    CAS  Article  Google Scholar 

  37. 37.

    Ray SS (2013) Clay-containing polymer nanocomposites: from fundamentals to real applications. Elsevier, Amsterdam

    Google Scholar 

  38. 38.

    Tadiello L, D’Arienzo M, Di Credico B, Hanel T, Matejka L, Mauri M, Morazzoni F, Simonutti R, Spirkova M, Scotti R (2015) The filler–rubber interface in styrene butadiene nanocomposites with anisotropic silica particles: morphology and dynamic properties. Soft Matter 11:4022–4033. https://doi.org/10.1039/C5SM00536A

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Bershtein VA, Egorova LM, Yakushev PN, Pissis P, Sysel P, Brozova L (2002) Molecular dynamics in nanostructured polyimide-silica hybrid materials and their thermal stability. J Polym Sci Part B Polym Phys 40:1056–1069. https://doi.org/10.1002/polb.10162

    CAS  Article  Google Scholar 

  40. 40.

    DeMaggio GB, Frieze WE, Gidley DW et al (1997) Interface and surface effects on the glass transition in thin polystyrene films. Phys Rev Lett 78:1524–1527. https://doi.org/10.1103/PhysRevLett.78.1524

    CAS  Article  Google Scholar 

  41. 41.

    Gorbatschow W, Arndt M, Stannarius R, Kremer F (1996) Dynamics of H-bonded liquids confined to nanopores. Europhys Lett 35:719–724. https://doi.org/10.1209/epl/i1996-00175-8

    CAS  Article  Google Scholar 

  42. 42.

    Daoukaki D, Barut G, Pelster R, Nimtz G, Kyritsis A, Pissis P (1998) Dielectric relaxation at the glass transition of confined N-methyl-ɛ-caprolactam. Phys Rev B 58:5336–5345. https://doi.org/10.1103/PhysRevB.58.5336

    CAS  Article  Google Scholar 

  43. 43.

    Barut G, Pissis P, Pelster R, Nimtz G (1998) Glass transition in liquids: two versus three-dimensional confinement. Phys Rev Lett 80:3543–3546. https://doi.org/10.1103/PhysRevLett.80.3543

    CAS  Article  Google Scholar 

  44. 44.

    Schüller J, Richert R, Fischer EW (1995) Dielectric relaxation of liquids at the surface of a porous glass. Phys Rev B 52:15232–15238. https://doi.org/10.1103/PhysRevB.52.15232

    Article  Google Scholar 

  45. 45.

    Dealy JM, Wissbrun KF (1990) Melt rheology and its role in plastics processing. Van Nostrand Reinhold, New York

    Google Scholar 

  46. 46.

    Ray SS, Okamoto K, Okamoto M (2003) Structure-property relationship in biodegradable poly (butylene succinate)/layered silicate nanocomposites. Macromolecules 36:2355–2367

    CAS  Article  Google Scholar 

  47. 47.

    Bandyopadyhyay J, Maiti A, Kahuta BB, Ray SS (2010) Thermal and rheological properties of biodegradable poly[(butylene-succinate)-co-adipate] nanocomposites. J Nanosci Nanotechnol 10:4184–4195

    Article  Google Scholar 

  48. 48.

    Ray SS, Maiti P, Okamoto M et al (2002) New polylactide/layered silicate nanocomposites. 1. Preparation, characterization, and properties. Macromolecules 35:3104–3110

    CAS  Article  Google Scholar 

  49. 49.

    Hyun YH, Lim ST, Choi HJ, Jhon MS (2001) Rheology of poly(ethylene oxide)/ organoclay nanocomposites. Macromolecules 34:8084–8093

    CAS  Article  Google Scholar 

  50. 50.

    Ren J, Silva AS, Krishnamoorti R (2000) Linear viscoelasticity of disordered polystyrene-polyisoprene block copolymer based layered-silicate nanocomposites. Macromolecules 33:3739–3746

    CAS  Article  Google Scholar 

  51. 51.

    Zhai W, Wang J, Chen N, Naguib HE, Park CB (2012) The orientation of carbon nanotubes in poly(ethylene-co-octene) microcellular foaming and its suppression on cell coalescence. Polym Eng Sci 52:2078–2089

    CAS  Article  Google Scholar 

  52. 52.

    Okamoto M, Nam P, Maiti P et al (2001) A house of cards structure in polypropylene/clay nanocomposites under eleongational flow. Nano Lett 1:295–298

    CAS  Article  Google Scholar 

  53. 53.

    Okamoto M, Nam P, Maiti P et al (2001) Biaxial flow-induced alignment of silicate layers in polypropylene/clay nanocomposite foam. Nano Lett 1:503–505

    CAS  Article  Google Scholar 

  54. 54.

    Ray SS, Okamoto M (2003) New polylactide/layered silicate nanocomposites. Part 6. Melt rheology and foam processing. Macromol Mater Eng 288:936–944

    CAS  Article  Google Scholar 

  55. 55.

    Banerjee R, Ray SS, Ghosh AK (2017) Investigations on blending and foaming behavior of styrene–ethylene–butylene–styrene/polystyrene blends. Int Polym Process 32:434–445. https://doi.org/10.3139/217.3362

    CAS  Article  Google Scholar 

  56. 56.

    Nam P, Maiti P, Okamoto M, Kotaka T (2002) Foam processing and cellular structure of polypropylene/clay nanocomposites. Polym Eng Sci 42:1907–1917

    CAS  Article  Google Scholar 

  57. 57.

    Lee S-T (2000) Foam nucleation in gas dispersed polymeric systems. In: Lee S-T (ed) Foam extrusion: principles and practice. Boca Raton

  58. 58.

    Lee S-T, Park CB, Ramesh N (2007) Polymeric foams: science and technology. CRC Press, Boca Raton

    Google Scholar 

  59. 59.

    Chen X, Feng JJ, Bertelo CA (2006) Plasticization effects on bubble growth during polymer foaming. Polym Eng Sci 46:97–107. https://doi.org/10.1002/pen.20434

    CAS  Article  Google Scholar 

  60. 60.

    Kanehashi S, Nakagawa T, Nagai K, Duthie X, Kentish S, Stevens G (2007) Effects of carbon dioxide-induced plasticization on the gas transport properties of glassy polyimide membranes. J Membr Sci 298:147–155. https://doi.org/10.1016/j.memsci.2007.04.012

    CAS  Article  Google Scholar 

  61. 61.

    Guo Z, Lee LJ, Tomasko DL (2008) CO2 permeability of polystyrene nanocomposites and nanocomposite foams. Ind Eng Chem Res 47:9636–9643. https://doi.org/10.1021/ie8000088

    CAS  Article  Google Scholar 

  62. 62.

    Li G, Gunkel F, Wang J, Park CB, Altstädt V (2007) Solubility measurements of N2 and CO2 in polypropylene and ethene/octene copolymer. J Appl Polym Sci 103:2945–2953

    CAS  Article  Google Scholar 

  63. 63.

    Durrill PL, Griskey RG (1969) Diffusion and solution of gases into thermally softened or molten polymers: part II. Relation of diffusivities and solubilities with temperature pressure and structural characteristics. AICHE J 15:106–110. https://doi.org/10.1002/aic.690150124

    CAS  Article  Google Scholar 

  64. 64.

    Koros WJ, Paul DR (1980) Sorption and transport of CO2 above and below the glass transition of poly(ethylene terephthalate). Polym Eng Sci 20:14–19. https://doi.org/10.1002/pen.760200104

    Article  Google Scholar 

Download references


The authors received financial support from the Department of Science and Technology (HGERA8X) and the Council for Scientific and Industrial Research (HGER74s), South Africa.

Author information



Corresponding authors

Correspondence to Suprakas Sinha Ray or Anup Kumar Ghosh.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Banerjee, R., Ray, S.S. & Ghosh, A.K. Rheology and foaming behaviour of styrene–ethylene–butylene–styrene nanocomposites. Colloid Polym Sci (2020). https://doi.org/10.1007/s00396-020-04677-6

Download citation


  • Thermoplastic elastomer nanocomposites
  • Rheology and morphology
  • Foaming behaviour