Effect of chain length and counter-ion on interaction study of mixed micellar system of isoquinoline-based surface active ionic liquid and cationic surfactants in aqueous medium

  • Amalendu PalEmail author
  • Renu Punia
Original Contribution


In the present study, we have investigated the effect of nature of surfactant, chain length and counter-ion on the mixed micellization behaviour ofvarious cationic surfactants, tetradecyltrimethylammonium bromide (TTAB), dodecyltrimethylammonium chloride (DTAC) and cationic gemini surfactant, bis(tetradecyldimethylammonium)hexane dibromide(C14-6-C14,2Br) with surface active ionic liquid (SAIL) tetradecylisoquinolinium bromide [C14iQuin][Br]. The interactions and mixed micellar behaviour of cationic surfactants and SAIL in aqueous medium have been studied by employing conductometry measurements and 1H NMR technique. The critical micelle concentration (cmc) and various thermodynamic parameters like standard Gibbs free energy of micellization (ΔGm0), change in standard enthalpy (ΔHm0) and entropy of micellization (ΔSm0) have been calculated from conductometry measurements. Mixed micellar parameters such as ideal cmc (cmc*), micellar mole fraction (X1m), micellar interaction parameter (βm) and activity coefficients, (f1 and f2) have been evaluated by applying Clint, Rubingh and Motomura theoretical models. Synergistic and non-ideal interactions have been found between SAIL and surfactants.

Graphical abstract


Tetradecyltrimethylammonium bromide (TTAB) Dodecyltrimethylammonium chloride (DTAC) Tetradecylisoquinolinium bromide [C14iQuin][Br] Mixed micellization Activity coefficients 


Funding information

The author acknowledge the financial support for work by the Council of Scientific and Industrial Research (CSIR), Government of India (Grant No. 21(1005)/15/EMR-П) through Emeritus Scientist grant of Prof. A. Pal.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

396_2019_4566_MOESM1_ESM.docx (653 kb)
ESM 1 (DOCX 652 kb)


  1. 1.
    Somasundaran P, Chakraborty S, Qiang Q, Deo P, Wang J, Zhang R (2004) Surfactants, polymers and their nanoparticles for personal care applications. J Cosmet Sci 55:1–17. Google Scholar
  2. 2.
    Schramm LL (ed) (2000) Surfactants, Fundamentals and Applications in Petrolium industry. Cambridge University Press, Cambridge UKGoogle Scholar
  3. 3.
    Mishra M, Muthuprasanna P, Prabha KS, Sobhita P, Babu AS, Chandiran IS, Arunachalam G, Shalini S (2009) Basic and potential applications of surfactants- a review. Int J PharmTech Res 1:1354–1365Google Scholar
  4. 4.
    Kralova I, Sjoblom J (2009) Surfactants used in food industry. J Dispers Sci Technol 30:1363–1383. CrossRefGoogle Scholar
  5. 5.
    Menger FM, Littau CA (1991) Gemini surfactants- synthesis and properties. J Am Chem Soc 113:1451–1452. CrossRefGoogle Scholar
  6. 6.
    Song LD, Rosen MJ (1996) Surface properties, micellization, and premicellar aggregation of gemini surfactants with rigid and flexible spacers. Langmuir 12:1149–1151. CrossRefGoogle Scholar
  7. 7.
    Rosen MJ, Mathias JH, Davenport L (1999) Aberrant aggregation behaviour in cationic gemini surfactants investigated by surface tension, interfacial tension and fluorescence methods. Langmuir 15:7340–7343. CrossRefGoogle Scholar
  8. 8.
    Tikariha D, Ghosh KK (2010) Mixed micellization properties of cationic monomeric and gemini surfactant. J Chem Eng Data 55:4162–4167. CrossRefGoogle Scholar
  9. 9.
    Khan AB, Wani FA, Dohare N, Ud-Parrey M, Singh P, Patel R (2017) Ionic liquid induced synergistic interaction between amitriptyline hydrochloride and cetyltrimethylammonium bromide. J Chem Eng Data 62:3064–3070. CrossRefGoogle Scholar
  10. 10.
    Ud-Din K, Khan AB, Naqvi AZ (2010) Mixed micellization of antidepressant drug amitriptyline hydrochloride and cationic surfactants. Colloids Surf B Biointerfaces 80:206–2012. CrossRefGoogle Scholar
  11. 11.
    Yu D, Huang X, Dang M, Lin Y, Jiang L, Huang J, Wang Y (2010) Effects of inorganic and organic salts on aggregation behaviour of cationic gemini surfactants. J Phys Chem B 114:14955–14964. CrossRefGoogle Scholar
  12. 12.
    Mahbub S, Rub MA, Hoque MA, Khan MA (2018) Mixed micellization study of dodecyltrmethylammonium chloride and cetyltrimethylammonium bromide mixture in aqueous /urea medium at different temperatures: theoretical and experimental view. J Phys Org Chem 31.
  13. 13.
    Qin L, Wang XH (2017) Surface adsorption and thermodynamic properties of mixed system of ionic liquid surfactants with cetyltrimethylammonium bromide. RSC Adv 7:51426–51435. CrossRefGoogle Scholar
  14. 14.
    Ghosh S, Ghatak C, Banerjee C, Mandal S, Kuchlyan J, Sarkar N (2013) Spontaneous transition of micelle-vesicle-micelle in a mixture of cationic surfactant and anionic surfactant like ionic liquid: a pure non-lipid small unilamellar vesicular template used for solvent and rotational relaxation study. Langmuir 29:10066–10076. CrossRefGoogle Scholar
  15. 15.
    Yuan J, Bai X, Zhao M, Zhang L (2010) C12mimBr ionic liquid /SDS vesicle formation and use as template for the synthesis of hollow silica sphere. Langmuir 26:11726–11731. CrossRefGoogle Scholar
  16. 16.
    Thakkar K, Bharatiya B, Shah DO, Ray D, Aswal VK, Bahadur P (2015) Interaction of ionic liquid type cationic surfactants with triton X-100 non-ionic micelles. Colloids Surf A Physicochem Eng Asp 484:547–557. CrossRefGoogle Scholar
  17. 17.
    Bhatt D, Maheria K, Parikh J (2014) Mixed systems of ionic liquid and non-ionic surfctants in aqueous media: surface and thermodynamic properties. J Chem Thermodyn 74:184–192. CrossRefGoogle Scholar
  18. 18.
    Earle MJ, Esperanca JMSS, Gilea MA, Lopes JNC, Rebelo LPN, Maggee JW, Seddon KR, Widegren JA (2006) The distillation and volatility of ionic liquids. Nature 439:831–834. CrossRefGoogle Scholar
  19. 19.
    Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2084. CrossRefGoogle Scholar
  20. 20.
    Seddon KR (2003) Ionic liquids: a taste of future. Nat Mater 2:360–365. CrossRefGoogle Scholar
  21. 21.
    Dupont J, De-Souza RF, Suarez PAZ (2002) Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev 102:3667–3692. CrossRefGoogle Scholar
  22. 22.
    Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150. CrossRefGoogle Scholar
  23. 23.
    Guo L, Pan X, Zhang C, Liu W, Wang M, Fang X, Dai S (2010) Ionic liquid electrolyte based S-Propyltetrahydrothiophenium Iodide for dye-sensitized solar cells. Solar Energy 84:373–378.
  24. 24.
    Ferraz R, Branco LC, Proudencio C, Naroriha JP, Petrovski Z (2011) Ionic liquids as active pharmaceutical ingredients. Chem Med Chem 6:975–985. CrossRefGoogle Scholar
  25. 25.
    Dong B, Li N, Zhang L, Yu L, Inoue T (2007) Surface adsorption and micelles formation of surface active ionic liquids in aqueous solution. Langmuir 23:4178–4182. CrossRefGoogle Scholar
  26. 26.
    Ei-Seoud OA, Pires PAR, Moghny TA, Bastos EL (2007) Synthesis and micellar properties of surface active ionic liquids: 1-alkyk-3-methylimidazolium chlorides. J Colloid Interface Sci 313:296–304. CrossRefGoogle Scholar
  27. 27.
    Jiao J, Dong B, Zhang H, Zhao Y, Wang X, Wang R, Yu L (2012) Aggregation behaviour of dodecyl sulfate based anionic surface active ionic liquid in water. J Phys Chem B 116:958–965. CrossRefGoogle Scholar
  28. 28.
    Cornellas A, Perez L, Comelles F, Ribosa I, Manresa A, Teresa GM (2011) Self-aggregation and antimicrobial activity of imidazolium and pyridinium based ionic liquids in aqueous solution. J Colloid Interface Sci 355:164–171CrossRefGoogle Scholar
  29. 29.
    Pyne A, Kuchlyan J, Maiti C, Dhara D, Sarkar N (2017) Cholesterol based surface active ionic liquid that can form micro emulsion and spontaneous vesicles. Langmuir 33:5891–5899. CrossRefGoogle Scholar
  30. 30.
    Dutta R, Kundu S, Sarkar N (2018) Ionic liquid induced aggregate formation and their application. Biophys Rev 10:861–871. CrossRefGoogle Scholar
  31. 31.
    Galgano PDO, Ei-Seoud A, Pires PAR, Moghny TA Bastos EL (2007) Synthesis and micellar properties of surface –active ionic liquids: 1-alkykl-3-methyl imidazolium chloride. J Colloid Interface Sci 313:296–304. CrossRefGoogle Scholar
  32. 32.
    Dong B, Li N, Zhang L, Yu L, Inoue T (2007) Surface adsorption and micelle formation of surface active ionic liquids in aqueous solution. Langmuir 123:4178–4182. CrossRefGoogle Scholar
  33. 33.
    Mahajan S, Sharma R, Mahajan RK (2013) Surface adsorption and mixed micelle formation of surface active ionic liquid in cationic surfactants: conductivity, surface tension, fluorescence and NMR studies. Colloids Surf A Physicochem Eng Asp 427:62–75. CrossRefGoogle Scholar
  34. 34.
    Azum N, Naqvi A, Akram M, Ud-Din K (2008) Studies of mixed micelle formation between cationic gemini and cationic conventional surfactants. J Colloid Interface Sci 328:429–435. CrossRefGoogle Scholar
  35. 35.
    Novak S, Pipercic SM, Makaric S, Primzoic I, Curlin M, Stefanic Z, Jurasin DD (2016) Interplay of non-covalent interaction in ionic liquid/sodium bis (2-ethylhexyl) sulfosuccinate mixtures: from lamellar to biscontineous cubic liquid crystalline phase. J Phys Chem B 120:12557–12567. CrossRefGoogle Scholar
  36. 36.
    Chabba S, Kumar S, Aswal VK, Kang TS, Mahajan RK (2015) Interfacial and aggregation behaviour of aqueous mixtures of imidazolium based surface active ionic liquids and anionic surfactant sodium dodecylbenzenesulfonate. Colloids Surf A Physicochem Eng Asp 472:9–20. CrossRefGoogle Scholar
  37. 37.
    Bhat R, Ab U, Farooq U, Wani FA, Alzahrani KA, Alshehri AA, Malik MA, Patel R (2019) Effect of rifamicinon the interfacial properties of imidazolium ionic liquids and its solubility there in. J Mol Liq 292:111347. CrossRefGoogle Scholar
  38. 38.
    Farooq U, Ali A, Patel R (2017) Interaction of surface active ionic liuid on antidepressant drug: micellezation and spectroscopic studies. J Solut Chem 47:568–585. CrossRefGoogle Scholar
  39. 39.
    Farooq U, Ali A, Patel R, Malik NA (2017) Self aggregation of ionic liquid-cationic surfactant mixed micelles in water and in diethylene glycol-water mixtures: conductometric, tensiometric, and spectroscopic studies. J Mol Liq 234:452–462. CrossRefGoogle Scholar
  40. 40.
    Zhang X, Peng X, Ge L, Yu L, Liu Z, Guo R (2014) Micellization behaviour of the ionic liquid lauryl isoquinolinium bromide in aqueous solution. Colloid Polym Sci 292:1111–1120. CrossRefGoogle Scholar
  41. 41.
    Pal A, Punia R (2018) Interaction study of mixed micellar system of isoquinoline based surface active ionic liquids and cationic surfactant in aqueous medium. Colloid Polym Sci 297:1011–1024. CrossRefGoogle Scholar
  42. 42.
    Zana R, Benrraou M, Rueff R (1991) Alkanediyl-alpha-omega-bis (dimethylalkylammonium bromide) surfactants. 1. Effect of spacerchain length on the critical micelle concentration and micelle ionization degree. Langmuir 7:1072–1075. CrossRefGoogle Scholar
  43. 43.
    Mehta SK, Bhasin KK, Chauhan R, Dham S (2005) Effect of temperature on critical micelle concentration and thermodynamic behaviour of dodecyldimethylethylammonium bromide and dodecyltrimethylammonium chloride in aqueous media. Colloids Surf A: Physiochem Eng Asp 255:153–157. CrossRefGoogle Scholar
  44. 44.
    Pal A, Punia R (2018) Thermodynamic and spectroscopic studies on cationic surfactant tetradecyltrimethylammonium bromide in aqueous solutions of trisubstituted ionic liquid 1,2-dimethyl-3-octylimidazolium chloride at different temperatures. J Dispers Sci Technol:1–9.
  45. 45.
    Molla MR, Rub MA, Ahmad A, Hoque MA (2017) Interaction between tetradecyltrimethylammonium bromide and benzyldimethylhexadecylammonium chloride in aqueous/urea solution at various temperatures: an experimental and theoretical investigation. J Mol Liq 238:62–70. CrossRefGoogle Scholar
  46. 46.
    Qi X, Zhang X, Luo G, Han C, Liu C, Zhang S (2013) Mixing behaviour of conventional cationic surfactant and ionic liquid surfactant 1-tetradecyl-3-methylimidazolium bromide (C14mimBr) in aqueous medium. J Dispers Sci Technol 34:125–133. CrossRefGoogle Scholar
  47. 47.
    Rosen MJ (1988) Surfactant and interfacial phenomenon2nd edn. John Willey and Sons, New YorkGoogle Scholar
  48. 48.
    Zana R (1996) Critical micelle concentration of surfactants in aqueous solution and free energy of micellization. Langmuir 12:1208–1211. CrossRefGoogle Scholar
  49. 49.
    Homans SW (2007) Dynamics and the thermodynamics of ligand-protien interactions. Bioactive Conformation 272:51–82. CrossRefGoogle Scholar
  50. 50.
    Oda M, Tanabe Y, Noda M, Inaba S, Krayukhina E, Fukada H, Uchiyama S (2016) Structural and binding properties of laminarin revealed by analytical ultracentrifugation and calorimetric analysis. Carbohydr Res 431:33–38CrossRefGoogle Scholar
  51. 51.
    Paul P, Mati SS, Bhattacharya SC, Kumar GS (2017) Exploring the interaction of phenothiazinium dyes methylene blue, new methylene blue, azure a and azure B with tRNAPhe: spectroscopic, thermodynamic, voltammetric and molecular modelling approach. Phys Chem Chem Phys 19:6636–6653CrossRefGoogle Scholar
  52. 52.
    Record Jr MT, Anderson CF, Lohman TM (1978). Q Rev Biophys 1978(11):103CrossRefGoogle Scholar
  53. 53.
    Clint JH (1975) Micellization of mixed non-ionic surface active agents. J Chem Soc Faraday Trans 71:1327–1334. CrossRefGoogle Scholar
  54. 54.
    Holland PM, Rubingh DN (1983) Non-ideal multicomponent mixed micelle model. J Phys Chem 87:1984–1990. CrossRefGoogle Scholar
  55. 55.
    Motomura K, Yamanaka M, Aratono M (1984) Thermodynamic consideration of mixed micelle of the surfactants. Colloid Polym Sci 262:948–955. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryKurukshetra UniversityKurukshetraIndia

Personalised recommendations