Advertisement

Effect of chain length and counter-ion on interaction study of mixed micellar system of isoquinoline-based surface active ionic liquid and cationic surfactants in aqueous medium

  • Amalendu PalEmail author
  • Renu Punia
Original Contribution
  • 58 Downloads

Abstract

In the present study, we have investigated the effect of nature of surfactant, chain length and counter-ion on the mixed micellization behaviour ofvarious cationic surfactants, tetradecyltrimethylammonium bromide (TTAB), dodecyltrimethylammonium chloride (DTAC) and cationic gemini surfactant, bis(tetradecyldimethylammonium)hexane dibromide(C14-6-C14,2Br) with surface active ionic liquid (SAIL) tetradecylisoquinolinium bromide [C14iQuin][Br]. The interactions and mixed micellar behaviour of cationic surfactants and SAIL in aqueous medium have been studied by employing conductometry measurements and 1H NMR technique. The critical micelle concentration (cmc) and various thermodynamic parameters like standard Gibbs free energy of micellization (ΔGm0), change in standard enthalpy (ΔHm0) and entropy of micellization (ΔSm0) have been calculated from conductometry measurements. Mixed micellar parameters such as ideal cmc (cmc*), micellar mole fraction (X1m), micellar interaction parameter (βm) and activity coefficients, (f1 and f2) have been evaluated by applying Clint, Rubingh and Motomura theoretical models. Synergistic and non-ideal interactions have been found between SAIL and surfactants.

Graphical abstract

Keywords

Tetradecyltrimethylammonium bromide (TTAB) Dodecyltrimethylammonium chloride (DTAC) Tetradecylisoquinolinium bromide [C14iQuin][Br] Mixed micellization Activity coefficients 

Notes

Funding information

The author acknowledge the financial support for work by the Council of Scientific and Industrial Research (CSIR), Government of India (Grant No. 21(1005)/15/EMR-П) through Emeritus Scientist grant of Prof. A. Pal.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

396_2019_4566_MOESM1_ESM.docx (653 kb)
ESM 1 (DOCX 652 kb)

References

  1. 1.
    Somasundaran P, Chakraborty S, Qiang Q, Deo P, Wang J, Zhang R (2004) Surfactants, polymers and their nanoparticles for personal care applications. J Cosmet Sci 55:1–17.  https://doi.org/10.1111/j.1467-2494.2005.002572.x Google Scholar
  2. 2.
    Schramm LL (ed) (2000) Surfactants, Fundamentals and Applications in Petrolium industry. Cambridge University Press, Cambridge UKGoogle Scholar
  3. 3.
    Mishra M, Muthuprasanna P, Prabha KS, Sobhita P, Babu AS, Chandiran IS, Arunachalam G, Shalini S (2009) Basic and potential applications of surfactants- a review. Int J PharmTech Res 1:1354–1365Google Scholar
  4. 4.
    Kralova I, Sjoblom J (2009) Surfactants used in food industry. J Dispers Sci Technol 30:1363–1383.  https://doi.org/10.1080/01932690902735561 CrossRefGoogle Scholar
  5. 5.
    Menger FM, Littau CA (1991) Gemini surfactants- synthesis and properties. J Am Chem Soc 113:1451–1452.  https://doi.org/10.1021/ja00004a077 CrossRefGoogle Scholar
  6. 6.
    Song LD, Rosen MJ (1996) Surface properties, micellization, and premicellar aggregation of gemini surfactants with rigid and flexible spacers. Langmuir 12:1149–1151.  https://doi.org/10.1021/la950508t CrossRefGoogle Scholar
  7. 7.
    Rosen MJ, Mathias JH, Davenport L (1999) Aberrant aggregation behaviour in cationic gemini surfactants investigated by surface tension, interfacial tension and fluorescence methods. Langmuir 15:7340–7343.  https://doi.org/10.1021/la9904096 CrossRefGoogle Scholar
  8. 8.
    Tikariha D, Ghosh KK (2010) Mixed micellization properties of cationic monomeric and gemini surfactant. J Chem Eng Data 55:4162–4167.  https://doi.org/10.1021/je100113r CrossRefGoogle Scholar
  9. 9.
    Khan AB, Wani FA, Dohare N, Ud-Parrey M, Singh P, Patel R (2017) Ionic liquid induced synergistic interaction between amitriptyline hydrochloride and cetyltrimethylammonium bromide. J Chem Eng Data 62:3064–3070.  https://doi.org/10.1021/acs.jced.7b00233 CrossRefGoogle Scholar
  10. 10.
    Ud-Din K, Khan AB, Naqvi AZ (2010) Mixed micellization of antidepressant drug amitriptyline hydrochloride and cationic surfactants. Colloids Surf B Biointerfaces 80:206–2012.  https://doi.org/10.1016/j.colsurfb.2010.06.007 CrossRefGoogle Scholar
  11. 11.
    Yu D, Huang X, Dang M, Lin Y, Jiang L, Huang J, Wang Y (2010) Effects of inorganic and organic salts on aggregation behaviour of cationic gemini surfactants. J Phys Chem B 114:14955–14964.  https://doi.org/10.1021/jp106031d CrossRefGoogle Scholar
  12. 12.
    Mahbub S, Rub MA, Hoque MA, Khan MA (2018) Mixed micellization study of dodecyltrmethylammonium chloride and cetyltrimethylammonium bromide mixture in aqueous /urea medium at different temperatures: theoretical and experimental view. J Phys Org Chem 31.  https://doi.org/10.1002/poc.3872
  13. 13.
    Qin L, Wang XH (2017) Surface adsorption and thermodynamic properties of mixed system of ionic liquid surfactants with cetyltrimethylammonium bromide. RSC Adv 7:51426–51435.  https://doi.org/10.1039/c7ra08915e CrossRefGoogle Scholar
  14. 14.
    Ghosh S, Ghatak C, Banerjee C, Mandal S, Kuchlyan J, Sarkar N (2013) Spontaneous transition of micelle-vesicle-micelle in a mixture of cationic surfactant and anionic surfactant like ionic liquid: a pure non-lipid small unilamellar vesicular template used for solvent and rotational relaxation study. Langmuir 29:10066–10076.  https://doi.org/10.1021/la402053a CrossRefGoogle Scholar
  15. 15.
    Yuan J, Bai X, Zhao M, Zhang L (2010) C12mimBr ionic liquid /SDS vesicle formation and use as template for the synthesis of hollow silica sphere. Langmuir 26:11726–11731.  https://doi.org/10.1021/la101221z CrossRefGoogle Scholar
  16. 16.
    Thakkar K, Bharatiya B, Shah DO, Ray D, Aswal VK, Bahadur P (2015) Interaction of ionic liquid type cationic surfactants with triton X-100 non-ionic micelles. Colloids Surf A Physicochem Eng Asp 484:547–557.  https://doi.org/10.1016/j.colsurfa.2015.08.039 CrossRefGoogle Scholar
  17. 17.
    Bhatt D, Maheria K, Parikh J (2014) Mixed systems of ionic liquid and non-ionic surfctants in aqueous media: surface and thermodynamic properties. J Chem Thermodyn 74:184–192.  https://doi.org/10.1016/j.jct/2014.01032 CrossRefGoogle Scholar
  18. 18.
    Earle MJ, Esperanca JMSS, Gilea MA, Lopes JNC, Rebelo LPN, Maggee JW, Seddon KR, Widegren JA (2006) The distillation and volatility of ionic liquids. Nature 439:831–834.  https://doi.org/10.1038/nature04451 CrossRefGoogle Scholar
  19. 19.
    Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2084.  https://doi.org/10.1021/cr980032t CrossRefGoogle Scholar
  20. 20.
    Seddon KR (2003) Ionic liquids: a taste of future. Nat Mater 2:360–365.  https://doi.org/10.1038/nmat907 CrossRefGoogle Scholar
  21. 21.
    Dupont J, De-Souza RF, Suarez PAZ (2002) Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev 102:3667–3692.  https://doi.org/10.1021/cr010338r CrossRefGoogle Scholar
  22. 22.
    Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150.  https://doi.org/10.1039/B006677j CrossRefGoogle Scholar
  23. 23.
    Guo L, Pan X, Zhang C, Liu W, Wang M, Fang X, Dai S (2010) Ionic liquid electrolyte based S-Propyltetrahydrothiophenium Iodide for dye-sensitized solar cells. Solar Energy 84:373–378.  https://doi.org/10.1016/j.solener.2009.11.008
  24. 24.
    Ferraz R, Branco LC, Proudencio C, Naroriha JP, Petrovski Z (2011) Ionic liquids as active pharmaceutical ingredients. Chem Med Chem 6:975–985.  https://doi.org/10.1002/cmdc.20110082 CrossRefGoogle Scholar
  25. 25.
    Dong B, Li N, Zhang L, Yu L, Inoue T (2007) Surface adsorption and micelles formation of surface active ionic liquids in aqueous solution. Langmuir 23:4178–4182.  https://doi.org/10.1021/la0633029 CrossRefGoogle Scholar
  26. 26.
    Ei-Seoud OA, Pires PAR, Moghny TA, Bastos EL (2007) Synthesis and micellar properties of surface active ionic liquids: 1-alkyk-3-methylimidazolium chlorides. J Colloid Interface Sci 313:296–304.  https://doi.org/10.1016/j.jcis.2007.04.028 CrossRefGoogle Scholar
  27. 27.
    Jiao J, Dong B, Zhang H, Zhao Y, Wang X, Wang R, Yu L (2012) Aggregation behaviour of dodecyl sulfate based anionic surface active ionic liquid in water. J Phys Chem B 116:958–965.  https://doi.org/10.1021/jp209276c CrossRefGoogle Scholar
  28. 28.
    Cornellas A, Perez L, Comelles F, Ribosa I, Manresa A, Teresa GM (2011) Self-aggregation and antimicrobial activity of imidazolium and pyridinium based ionic liquids in aqueous solution. J Colloid Interface Sci 355:164–171CrossRefGoogle Scholar
  29. 29.
    Pyne A, Kuchlyan J, Maiti C, Dhara D, Sarkar N (2017) Cholesterol based surface active ionic liquid that can form micro emulsion and spontaneous vesicles. Langmuir 33:5891–5899.  https://doi.org/10.1021/acs.langmuir.7b01158 CrossRefGoogle Scholar
  30. 30.
    Dutta R, Kundu S, Sarkar N (2018) Ionic liquid induced aggregate formation and their application. Biophys Rev 10:861–871.  https://doi.org/10.1007/s12551-018-0408-5 CrossRefGoogle Scholar
  31. 31.
    Galgano PDO, Ei-Seoud A, Pires PAR, Moghny TA Bastos EL (2007) Synthesis and micellar properties of surface –active ionic liquids: 1-alkykl-3-methyl imidazolium chloride. J Colloid Interface Sci 313:296–304.  https://doi.org/10.1016/j.jcis.2007.04.028 CrossRefGoogle Scholar
  32. 32.
    Dong B, Li N, Zhang L, Yu L, Inoue T (2007) Surface adsorption and micelle formation of surface active ionic liquids in aqueous solution. Langmuir 123:4178–4182.  https://doi.org/10.1021/la0633029 CrossRefGoogle Scholar
  33. 33.
    Mahajan S, Sharma R, Mahajan RK (2013) Surface adsorption and mixed micelle formation of surface active ionic liquid in cationic surfactants: conductivity, surface tension, fluorescence and NMR studies. Colloids Surf A Physicochem Eng Asp 427:62–75.  https://doi.org/10.1016/j.colsurfa.2013.03.023 CrossRefGoogle Scholar
  34. 34.
    Azum N, Naqvi A, Akram M, Ud-Din K (2008) Studies of mixed micelle formation between cationic gemini and cationic conventional surfactants. J Colloid Interface Sci 328:429–435.  https://doi.org/10.1016/j.jcis.2008.09.034 CrossRefGoogle Scholar
  35. 35.
    Novak S, Pipercic SM, Makaric S, Primzoic I, Curlin M, Stefanic Z, Jurasin DD (2016) Interplay of non-covalent interaction in ionic liquid/sodium bis (2-ethylhexyl) sulfosuccinate mixtures: from lamellar to biscontineous cubic liquid crystalline phase. J Phys Chem B 120:12557–12567.  https://doi.org/10.1021/acs.jpcb.6b10515 CrossRefGoogle Scholar
  36. 36.
    Chabba S, Kumar S, Aswal VK, Kang TS, Mahajan RK (2015) Interfacial and aggregation behaviour of aqueous mixtures of imidazolium based surface active ionic liquids and anionic surfactant sodium dodecylbenzenesulfonate. Colloids Surf A Physicochem Eng Asp 472:9–20.  https://doi.org/10.1016/j.colsurfa.2015.02.032 CrossRefGoogle Scholar
  37. 37.
    Bhat R, Ab U, Farooq U, Wani FA, Alzahrani KA, Alshehri AA, Malik MA, Patel R (2019) Effect of rifamicinon the interfacial properties of imidazolium ionic liquids and its solubility there in. J Mol Liq 292:111347.  https://doi.org/10.1016/j.molliq.2019.111347 CrossRefGoogle Scholar
  38. 38.
    Farooq U, Ali A, Patel R (2017) Interaction of surface active ionic liuid on antidepressant drug: micellezation and spectroscopic studies. J Solut Chem 47:568–585.  https://doi.org/10.1007/s10953-018-0739-7 CrossRefGoogle Scholar
  39. 39.
    Farooq U, Ali A, Patel R, Malik NA (2017) Self aggregation of ionic liquid-cationic surfactant mixed micelles in water and in diethylene glycol-water mixtures: conductometric, tensiometric, and spectroscopic studies. J Mol Liq 234:452–462.  https://doi.org/10.1016/j.molliq.2017.03.109 CrossRefGoogle Scholar
  40. 40.
    Zhang X, Peng X, Ge L, Yu L, Liu Z, Guo R (2014) Micellization behaviour of the ionic liquid lauryl isoquinolinium bromide in aqueous solution. Colloid Polym Sci 292:1111–1120.  https://doi.org/10.1007/s00396-013-3151-2 CrossRefGoogle Scholar
  41. 41.
    Pal A, Punia R (2018) Interaction study of mixed micellar system of isoquinoline based surface active ionic liquids and cationic surfactant in aqueous medium. Colloid Polym Sci 297:1011–1024.  https://doi.org/10.1007/s00396-019-04519-0 CrossRefGoogle Scholar
  42. 42.
    Zana R, Benrraou M, Rueff R (1991) Alkanediyl-alpha-omega-bis (dimethylalkylammonium bromide) surfactants. 1. Effect of spacerchain length on the critical micelle concentration and micelle ionization degree. Langmuir 7:1072–1075.  https://doi.org/10.1021/la00054a008 CrossRefGoogle Scholar
  43. 43.
    Mehta SK, Bhasin KK, Chauhan R, Dham S (2005) Effect of temperature on critical micelle concentration and thermodynamic behaviour of dodecyldimethylethylammonium bromide and dodecyltrimethylammonium chloride in aqueous media. Colloids Surf A: Physiochem Eng Asp 255:153–157.  https://doi.org/10.1016/j.colsurfa.2004.12.038 CrossRefGoogle Scholar
  44. 44.
    Pal A, Punia R (2018) Thermodynamic and spectroscopic studies on cationic surfactant tetradecyltrimethylammonium bromide in aqueous solutions of trisubstituted ionic liquid 1,2-dimethyl-3-octylimidazolium chloride at different temperatures. J Dispers Sci Technol:1–9.  https://doi.org/10.1080/01932691.2018.1534593
  45. 45.
    Molla MR, Rub MA, Ahmad A, Hoque MA (2017) Interaction between tetradecyltrimethylammonium bromide and benzyldimethylhexadecylammonium chloride in aqueous/urea solution at various temperatures: an experimental and theoretical investigation. J Mol Liq 238:62–70.  https://doi.org/10.1016/j.molliq.2017.04.061 CrossRefGoogle Scholar
  46. 46.
    Qi X, Zhang X, Luo G, Han C, Liu C, Zhang S (2013) Mixing behaviour of conventional cationic surfactant and ionic liquid surfactant 1-tetradecyl-3-methylimidazolium bromide (C14mimBr) in aqueous medium. J Dispers Sci Technol 34:125–133.  https://doi.org/10.1080/01932691.2011.653926 CrossRefGoogle Scholar
  47. 47.
    Rosen MJ (1988) Surfactant and interfacial phenomenon2nd edn. John Willey and Sons, New YorkGoogle Scholar
  48. 48.
    Zana R (1996) Critical micelle concentration of surfactants in aqueous solution and free energy of micellization. Langmuir 12:1208–1211.  https://doi.org/10.1021/la950691q CrossRefGoogle Scholar
  49. 49.
    Homans SW (2007) Dynamics and the thermodynamics of ligand-protien interactions. Bioactive Conformation 272:51–82.  https://doi.org/10.1007/1282006090 CrossRefGoogle Scholar
  50. 50.
    Oda M, Tanabe Y, Noda M, Inaba S, Krayukhina E, Fukada H, Uchiyama S (2016) Structural and binding properties of laminarin revealed by analytical ultracentrifugation and calorimetric analysis. Carbohydr Res 431:33–38CrossRefGoogle Scholar
  51. 51.
    Paul P, Mati SS, Bhattacharya SC, Kumar GS (2017) Exploring the interaction of phenothiazinium dyes methylene blue, new methylene blue, azure a and azure B with tRNAPhe: spectroscopic, thermodynamic, voltammetric and molecular modelling approach. Phys Chem Chem Phys 19:6636–6653CrossRefGoogle Scholar
  52. 52.
    Record Jr MT, Anderson CF, Lohman TM (1978). Q Rev Biophys 1978(11):103CrossRefGoogle Scholar
  53. 53.
    Clint JH (1975) Micellization of mixed non-ionic surface active agents. J Chem Soc Faraday Trans 71:1327–1334.  https://doi.org/10.1039/F19757101327 CrossRefGoogle Scholar
  54. 54.
    Holland PM, Rubingh DN (1983) Non-ideal multicomponent mixed micelle model. J Phys Chem 87:1984–1990.  https://doi.org/10.1021/j100234a030 CrossRefGoogle Scholar
  55. 55.
    Motomura K, Yamanaka M, Aratono M (1984) Thermodynamic consideration of mixed micelle of the surfactants. Colloid Polym Sci 262:948–955.  https://doi.org/10.1007/BF01490027 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryKurukshetra UniversityKurukshetraIndia

Personalised recommendations